TWN4

APl Reference

DocRev15, January 31, 2017

Elatec GmbH

Contents %EC

Contents
1 System Functions e e 11
1.1 SysCall 11
1.2 Reset e 11
1.3 StartBootloader e 11
1.4 GetSysTicks e 11
1.5 GetVersionString L 12
1.6 GetUSBType 12
1.7 GetDeviceType o e 13
1.8 Sleep e 13
1.9 GetDeviceUID e 14
1.10 SetParameters L 14
111 GetLastError e 15
2 l/OFunctions 16
2.1 Configuration. e 16
2141 Set COM-Port Parameters e 16
212 GetUSBDeviceState 17
2.1.3 GetHostChannel 17
2.2 Miscellaneous Functions 17
221 WakeUpHost 17
23 Datal/O e 17
2.3.1 Query l/OBufferSize 17
23.2 Getl/OBufferByteCount 18
233 TestEmpty 18
234 TestFull 19
235 SendByte 19
2.3.6 SendMultiple Bytes 19
237 ReadByte 20
2.3.8 ReadMultipleBytes 20
3 Memory Functions e 21
3.1 ByteOperations e 21
3.1.1 Compare Bytes 21
3.1.2 CopyBytes e 21
3.1.3 FillBytes 22
3.1.4 SwapBytes 22
3.2 BitOperations e 22
3.21 ReadBit 22
3.22 Write Bit 23
3.23 CopyBit e 23
3.24 CompareBits 24
3.25 CopyBits 24
3.2.6 FillBits e e 25
3.27 SwapBits 25
3.28 CountBits e 26

Page 2 of 204

Contents %EC
4 Peripheral Functions 27
4.1 General Purpose Inputs/Outputs (GPIOs) 27
411 Configuration L 27
4111 Outputs e 27

41.1.2 Inputs e 27

41.2 BasicPortFunctions 28
4121 SetGPIlOsto LogicalLevel 28

4122 ToggleGPIOs e 28

4.1.2.3 Waveform Generation oL 28

4124 ReadGPIOs e 29

4.1.3 Higher Level Port Functions 29
4.1.3.1 Send Datain Wiegand Format 29

41.3.2 SendDatainOmronFormat 31

4.2 Beepero e 32
43 LEDS e e e 32
4.3.1 General Purpose LED Functions 32
4.3.1.1 Initialization 32

4.3.1.2 SetLEDs On/Off 33

43.1.3 Toggle LEDs e 33

43.1.4 BIlnkLEDs e 33

4315 GetLEDState 34

4.3.2 DiagnosticLED 34
4.3.2.1 SetDiagnostic LED On/Off 34

4.3.2.2 Toggle DiagnosticLED 34

4323 GetLEDState 35

5 Conversion Functions L e 36
5.1 Hexadecimal ASCIltoBinary 36
51.1 Scan Hexadecimal Character 36
5.1.2 ScanHexadecimal String 36

5.2 Binary to Hexadecimal ASCIl 37
6 12C Functions L e 38
6.1 Initialization/Deinitialization L 38
6.1.1 12CInit . . e 38
6.1.2 12CDelnit e e 38
6.1.3 Examples 38

6.2 Communication (Master) e 38
6.2.1 [2CMasterStart L 38
6.2.2 12CMasterStop e 39
6.2.3 12CMasterTransmitByte L L 39
6.2.4 12CMasterReceiveByte o 39
6.2.5 12CMasterBeginWrite L L 39
6.2.6 12CMasterBeginRead 39
6.2.7 12CMasterSetAck L 40
6.2.8 Examples. 40

6.3 Communication (Slave) oL 40
6.3.1 Slaveto Master 41
6.3.2 MastertoSlave 41
6.3.3 Examples. 41

7 SPIFUNCHONS e 43
71 Initialization/Deinitialization 43
711 SPIInit . L e 43

Page 3 of 204

Contents %EC
7.1.2 SPIDelnit e e e 44

7.2 Communication L e e e 44
7.21 SPIMasterBeginTransfer 44

7.22 SPIMasterEndTransfer. 44

7.2.3 SPITransceive e e e 44

7.24 SPITransmit e 45

725 SPIReceive e 45

7.3 Examples 45

8 RFFunctions e e e 47
8.1 SearchTag L e e 47
8.2 SetRFOff . . . 47
8.3 SetTagTypes o i e 47
8.3.1 Supported Types of LF Tags (125kHz-134.2kHz) 48

8.3.2 Supported Types of HF Tags (13.56 MHz, Bluetooth) 49

8.4 GetTagTypes o o e 49
8.5 GetSupportedTagTypes o i e e 49

9 EM4x02-Specific Transponder Operationso 51
9.1 Function e e 51
9.1.1 EM4102_GetTagInfo o 51

10 HITAG 1- and HITAG S-Specific Transponder Operations 52
10.1 Read/Write Data e 52
10.1.1 HitagiS_ReadPage 52

10.1.2 Hitag1S_WritePage 52

10.1.3 HitagiS_ReadBlock 53

10.1.4 Hitag1S_WriteBlock 53

10.2 Hitag1S_Halt e 53

11 HITAG 2-Specific Transponder Operations ot i i it e oo 55
111 Read/WriteData 55
11.1.1 Hitag2_ReadPage 55

11.1.2 Hitag2_WritePage 55

11.1.3 Hitag2_SetPassword 56

11.2 Hitag2_Halt e 56

12 EM4x50-Specific Transponder Operations o o 57
12,1 Funclions e e e 57
1211 EM4150_Login o e e e e 57

12.1.2 EM4150 ReadWord e 57

12.1.3 EM4150 WriteWord e 57

12.1.4 EM4150 WritePassword e 58

12.1.5 EM4150_GetTagInfo 58

13 AT55xx-Specific Transponder Operations i i it i e it 59
13.1 Control Functions e 59
13.1.1 AT55_Begin L e 59

13.2 ReadData e 59
13.2.1 AT55_ReadBlock e 60

13.2.2 AT55 ReadBlockProtected 60

13.3 WriteData e 60
13.3.1 AT55 WriteBlock e 60

13.3.2 AT55 WriteBlockProtected 61

13.3.3 AT55 WriteBlockAndLock 61

13.3.4 AT55 WriteBlockProtectedAndLock 61

Page 4 of 204

Contents %EC
14 TILF (TIRIS) Functions e 62
141 Search Function e 62
1411 TILF_SearchTag e 62

14.2 Single-Page Read/Write Function o 62
14.2.1 TILF_ChargeOnlyRead 62
14.2.2 TILF_ChargeOnlyReadlo 63
14.2.3 TILF_SPProgramPage 63
14.2.4 TILF_SPProgramPagelo 63

14.3 Multi-Page Read/Write Function 64
14.3.1 TILF_MPGeneralReadPage 64
14.3.2 TILF_MPSelectiveReadPage 64
14.3.3 TILF_MPProgramPage e 64
14.3.4 TILF_MPSelectiveProgramPage 64
14.3.5 TILF_MPLockPage e 65
14.3.6 TILF_MPSelectiveLockPage 65
14.3.7 TILF_MPGeneralReadPagelLo 65
14.3.8 TILF_MPSelectiveReadPageLo 66
14.3.9 TILF_MPProgramPagelo 66
14.3.10 TILF_MPSelectiveProgramPagelo 66
14.3.11 TILF_MPLockPagelo e 67
14.3.12 TILF_MPSelectiveLockPagelLo L. 67
14.4 Multi-Usage Read/Write Function 67
1441 TILF_MUGeneralReadPage 67
14.4.2 TILF_MUSelectiveReadPage 68
14.4.3 TILF_MUSpecialReadPage 68
14.4.4 TILF_MUProgramPage 68
14.4.5 TILF_MUSelectiveProgramPage 69
14.4.6 TILF_MUSpecialProgramPage 69
14.4.7 TILF_MULockPage e 70
14.4.8 TILF_MUSelectiveLockPage 70
14.4.9 TILF_MUSpeciallockPage 70

15 1S0O14443 Transponder Operations i it 71
15.1 ISO14443A . . L o e 71
15.1.1 Get ATQA e 71
15.1.2 Get SAK e e 71
15.1.3 Get ATS e 71

15.2 ISO14443B e 72
15.2.1 Get ATQB e 72
15.2.2 GetAnswerto ATTRIB. 72

15.3 Check Presence e 73
15.4 1S0O14443-3 Transparent Data Exchange 73
15.5 1S014443-4 Transparent Data Exchange 74
15.6 Multiple Tag Handling e 74
15.6.1 Search for Transponders 75
15.6.2 Select Transponder L 75

16 MIFARE Classic Specific Transponder Operations 76
16.1 LOgin e 77
16.2 Read/WriteData e 78
16.2.1 ReadDataBlock 78
16.2.2 Write DataBlock 78

Page 5 of 204

Contents %EC
16.3 Handling of Value Blocks e 79
16.3.1 Read ValueBlock 79
16.3.2 Write Value Block 79
16.3.3 IncrementValueBlock 79
16.3.4 DecrementValueBlock 80
16.3.5 Copy ValueBlock 80

17 MIFARE Plus Specific Transponder Operations o oo 81
17.1 Personalisation e 81
17.1.1 Write Personalisation 81
17.1.2 Commit Personalisation 82

17.2 Authenticate AES e 82
17.3 Security Level 3 e 83
17.3.1 Read/Write Data e 83
17.3.1.1 Read DataBlock 83

17.3.1.2 Write DataBlock 83

17.3.2 Handlingof ValueBlocks 84
17.3.2.1 Read ValueBlock 84

17.3.2.2 Write Value Block 84

17.3.2.3 Increment Value Block 84

17.3.2.4 Decrement ValueBlock L o o 85

17.3.2.5 Copy Value Block 85

18 MIFARE Ultralight/Ultralight C/Ultralight EV1 Specific Transponder Operations 86
18.1 Authentication (Ultralight Conly) 86
18.1.1 Authentication withgivenKey L 86
18.1.2 Authenticationusing SAM Card 87

18.2 Write Key from SAM to Transponder Key Storage Area 87
18.3 Read/Write Data e 88
18.3.1 Read Page e 88
18.3.2 Write Page 88

18.4 Mifare Ultralight EV1 o 89
18.41 FastRead e 89
18.4.2 IncrementCounter 89
18.4.3 Read Counter e e 89
18.4.4 Read ECC Signature o 90
18.4.5 Get Transponder Information Lo 90
18.4.6 Password Authentication o 90
18.4.7 Check Tearing Event. 91

19 NTAG Specific Transponder Operations i i ittt it i e e 92
19.1 Read/Write Data e e 92
19.1.1 Read Page e 92
19.1.2 Write Page 92
19.1.3 FastRead e 93

19.2 Miscellaneous functions L 93
19.2.1 Read Counter e 93
19.2.2 Read ECC Signature 93
19.2.3 Get Transponder Information Lo 94
19.2.4 Password Authentication 94
19.2.5 SelectSector e 94

20 DESFire Specific Transponder Operations i ittt 95
20.1 Security Related Operations 96
20.1.1 Authenticate L 96

Page 6 of 204

Contents %EC

20.1.2 GetKey Version e e 99
20.1.3 GetKey Settings 99
20.1.4 Change Key Settings e 101
20.1.5 Change Key e 102

20.2 Transponder Related Operations e 104
20.2.1 Create Application 104
20.2.2 Delete Application 105
20.2.3 Get ApplicationIDs 105
20.2.4 Select Application 106
20.2.5 Format Transponder L 107
20.2.6 Get Transponder Information Lo 107
20.2.7 Get Available Memory Spaceo 108
20.2.8 GetCardUID e e e 109
20.2.9 Set Transponder Configuration 109
20.2.9.1 Disable FormatTag 109

20.2.9.2 Enable RandomID 110

20.2.9.3 SetDefaultKey L 110

20.2.9.4 Set User-defined Answer To Select (ATS) 111

20.3 Application Related Operations e 111
20.3.1 Create File e 111
20.3.2 DeleteFile 114
20.3.3 GetFileIDs e 115
20.3.4 GetFileSettings 115
20.3.,5 Change File Settings 117

20.4 File Related Operations e 117
20.4.1 DataFiles e 117
20411 ReadData e 117

204.1.2 Write Data e 119

20.4.2 ValueFiles o 121
20.421 GetValue e 121

20.4.2.2 Debit 122

20.423 Credit e 123

20.4.2.4 Limited Credit 123

20.4.3 RecordFiles 124
20.4.31 Read Records e 124

20.4.3.2 Write Record e 125

20.4.3.3 ClearRecord File 126

20.4.4 Commit Transaction e 126
20.4.5 AbortTransaction 127

21 SAM AVI/AV2 . . o e 128
21.1 Host Authentication 128
21.2 QueryKey Entry e 128
22 1SO15693 Specific Transponder Operations 0 i 130
22.1 Generic ISO15693 Command 130
22.2 Gather Tag Specific Information L oo o 130
22.21 Get System Information L 130
2222 GetTagType o o o e 132
22221 GetTag Type FromUID 132

22.2.2.2 Get Tag Type From System Information 133

22.3 Read/Write Data e 135
22.3.1 ReadSingle Block 135

Page 7 of 204

Contents %EC
22.3.2 Write Single Block L 135

23 LEGIC-Specific Functions e 137
23.1 Direct Access of LEGIC Chip o 137
23.1.1 SM4X00 GenericRaw e 137

23.1.2 SM4X00 GEenericC o o e e e e e e 138

23.1.3 SM4X00 StartBootloader 138

23.1.4 SM4X00 EraseFlash 138

23.1.5 SM4X00_ProgramBlock 139

24 iCLASS Specific Transponder Operations o ittt 140
241 Read PACBIits e 140
242 Example 140

25 FeliCa o e e 142
25.1 Polling e 142
25.2 RequestSystem Code. e 142
25.3 RequestService L 143
25.4 Read Without Encryption 143
25.5 Write Without Encryption oL 144
25.6 Transparent Data Exchange 145

26 Simple NDEF Exchange Protocol (SNEP) oo oo 146
26.1 Initialize SNEP Service e 146
26.2 GetConnection State L 146
26.3 Query Message FIFO 147
26.4 Transmit NDEF Message o i i e 148
26.41 BeginMessage e 148

26.4.2 Send Message Fragment 148

26.4.3 Example e 149

26.5 Receive NDEF Message 0 i i it e 151
26.5.1 TestMessage e 151

26.5.2 Receive Message Fragment. L o 151

26.5.3 Example 152

27 BLE Functions 154
27.1 BLEPresetConfig e 154
27.2 BLEPresetUserData e 156
27.3 BLEInit e 157
27.4 BLECheckEvent e 158
27.5 BLEGetAddress e 159
27.6 BLEGetVersion e 160
27.7 BLEGetEnvironment Lo 160
27.8 BLEGetGattServerAttributeValueo 161
27.9 BLESetGattServerAttributeValue oo 161
27.10 BLERequestRssi L 162
27.11 BLERequestEndpointClose L 162

28 Contact Card Operations L e 163
28.1 Microprocessor Cards e e e 163
28.1.1 QueryCardSlotStatus 163

28.1.2 Card Activation 164

28.1.3 CardDeactivation e 165

28.1.4 Set Communication Settings 165

28.1.5 Transparent Data Transmission 168

28.1.6 Exchange Of APDUs 168

Page 8 of 204

Contents %EC

29

30

31

32
33

28.1.7 Examples e 170
28.1.7.1 PPSExample 170

28.1.7.2 Communication Example oL 170

282 Memory Cards e 172
28.2.1 Get ATR e e 172
28.22 Read MainMemory 172
28.2.3 Write Main Memory e 173
28.2.4 Read Security Memory 173
28.2.5 Write Security Memory 173
28.2.6 Read Protection Memory L 174
28.2.7 Write Protection Memory 174
28.2.8 Compare VerificationData. 174
Cryptographic Operations e 176
29.1 Initialization L 178
29.2 Encrypt e 178
29.3 Decrypt. 179
29.4 ResetlnitVector e 179
Storage Functions L 180
30.1 Management Functions 180
30.1.1 FSMount 180
30.1.2 FSFormat. 181
30.2 File Functions 181
30.2.1 FSOpPEeNn e e 181
30.2.2 FSClose e 182
30.2.3 FSCloseAll e e 183
30.2.4 FSSeek. e e e 183
30.2.5 FSTell. o e 183
30.2.6 FSReadBytes 184
30.2.7 FSWriteBytes. e 184

30.3 Directory Functions L 185
30.3.1 FSFindFirst e 185
30.3.2 FSFindNext e 185
30.3.3 FSDelete e 185
30.3.4 FSRename e e 186
30.4 Miscellaneous Functions L 186
30.4.1 FSGetStoragelnfo 186

30.5 Examples 187
System Parameters 189
31.1 TLV Format e 189
31.2 Manifest 189
31.3 Available Parameters 191
System Errors e e 193
Runtime Library e 195
33.1 Timer Functions e 195
33.1.1 StartTimer e e e 195
33.1.2 StopTimer e e 195
33.1.3 TestTimer. o e e 196

33.2 Host Communication e 196
33.2.1 SetHostChannel 196
33.2.2 HostTestByte 196
33.2.3 HostReadByte 196

Page 9 of 204

Contents EL._NEC
33.2.4 HostTestChar 197

33.25 HostReadChar e 197

33.2.6 HostWriteByte 197

33.2.7 HostWriteChar e 197

33.2.8 HostWriteString e 198

33.2.9 HostWriteRadix 198

33.2.10 HostWriteBin 198
33.2.11 HostWriteDec e 198
33.2.12 HostWriteHex 199
33.2.13 HostWriteVersion 199

33.3 BeepFunctions 199
33.3.1 SetVolume e 199

33.3.2 GetVolume e e 200

33.3.3 BeepLow 200

33.3.4 BeepHigh. e 200

33.4 Compatibility to TWN3 e 200
33.4.1 ConvertTagTypeToTWN3 200

33.5 Simple Protocol e 201
33.5.1 SimpleProtolnit 201

33.5.2 SimpleProtoTestCommand 201

33.5.3 SimpleProtoExecuteCommand 202

33.5.4 SimpleProtoSendResponse 202

34 Compatibility of TWN4 MultiTech MiniReader 203
35 Disclaimer e e e e 204

Page 10 of 204

ELATEC
oy

1 System Functions

1 System Functions

1.1 SysCall

This function is useful for writing interfaces, which do a remote call of a system function,

bool SysCall(TEnvSysCall *Env) ;

Parameters:
TEnvSysCall *Env Pointer to a structure which specifies parameters of the functions to be
called.
Return: If the function has been called the return value is true, otherwise it is false.
In this case the specified function does not exist.
1.2 Reset

This functions is performing a reset of the firmware, which also includes a restart of the currently running
App.

void Reset(void);
Parameters: None.

Return: None.

1.3 StartBootloader

This function is performing a manual call of the boot loader. As a consequence the execution of the App is
stopped.

void StartBootloader(void);

Parameters: None.

Return: None.

1.4 GetSysTicks

Retrieve number of system ticks, specified in multiple of 1 milliseconds, since startup of the firmware.

unsigned long GetSysTicks(void);

Page 11 of 204

ELATEC

1 System Functions
Parameters: None.
Return: Number of system ticks since startup of the firmware. The returned value

will restart at 0 after 232 system ticks (around 1193 hours).

1.5 GetVersionString

Retrieve version information. The function generates a ASCII string, terminated by 0.

int GetVersionString(char *VersionString,int MaxLen);

Parameters:
char *VersionString Pointer to an array of characters, which will receive the version information.
int MaxLen Maximum number of characters, the specified byte array can receive exclud-
ing the O-termination.
Return: Length of the returned string excluding the 0-termination.
Example:

// This sample demonstrates, how to send the version string
// to the host
void WriteChar(char Char)

{
HostWriteByte(Char) ;
}
void WriteString(const char *String)
{
while (*String)
WriteChar (*String++) ;
}
void WriteVersion(void)
{
char Version[30+1];
GetVersionString(Version,sizeof (Version)-1);
WriteString(Version);
}

1.6 GetUSBType

Retrieve type of USB communication. This could by keyboard emulation or CDC emulation or some other
value for future or custom implementations.

int GetUSBType(void);

Page 12 of 204

ELATEC
oy

1 System Functions

Parameters: None.

Return: USBTYPE_NONE: No USB stack,
USBTYPE_CDC: CDC device (virtual COM port),
USBTYPE_KEYBOARD: HID keyboard,
USBTYPE_CCID_HID: CCID + HID (compound device),
USBTYPE_REPORTS: CCID + HID reports,
USBTYPE_CCID_CDC: CCID + CDC (compound device),
USBTYPE_CCID: CCID

1.7 GetDeviceType

Retrieve type of underlying TWN4 hardware.

int GetDeviceType(void);

Parameters: None.
Return: DEVTYPE_LEGICNFC: TWN4 LEGIC, DEVTYPE_MIFARENFC: TWN4 MIFARE
1.8 Sleep

The device enters the sleep state for a specified time. During sleep state, the device reduces the current
consumption to a value, which depends on the mode of sleep.

int Sleep(unsigned long Ticks,unsigned long Flags)

Parameters:

unsigned long Ticks Time, specified in milliseconds, the device should enter the sleep state.

unsigned long Flags Events, which cause the function immediately to return. The parameter is a
bitwise OR of all events to be handled.

Return: This function always return the value 0.

Definition Value | Description

SLEEPMODE_SLEEP | 0x0000 | During sleep, device still can be waked up via
communication port. In this mode, the device has
higher current consumption:

TWN4 MIFARE: 8mA

TWN4 LEGIC: 20mA

SLEEPMODE_STOP | 0x0100 | During stop, device still cannot be waked up.

This results in lower current consumption:
TWN4 MIFARE: 0.5mA
TWN4 LEGIC: 13.5mA

The sleep mode can optionally be interrupted by events. The events are bitwise or-combined and are
specified as parameters in the call of the function Sleep. Following events are defined:

Page 13 of 204

ELATEC
oy

1 System Functions

Definition Value | Description

WAKEUP_BY_USB_MSK 0x01 | The USB input channel received at least on byte.
WAKEUP_BY_COM1_MSK 0x02 | The input channel of COM1 received at least on byte.
WAKEUP_BY_COM2_MSK 0x04 | The input channel of COM2 received at least on byte.

WAKEUP_BY_TIMEOUT_MSK | 0x10 | Sleep time ran out.

WAKEUP_BY_LPCD_MSK 0x20 | The presence of a transponder card was detected.
(Supported by TWN4 MultiTech Nano only)

1.9 GetDeviceUID

This function returns a UID, which is unique to the specific TWN4 device.

void GetDeviceUID(byte *UID)

Parameters:

byte *UID Pointer ro an array of bytes, which receives 12 bytes. These 12 bytes repre-
sent the UID of the device.

Return: None.

1.10 SetParameters

This function allows to set parameters, which influence the behaviour of the TWN4 firmware. See also
chapter System Parameters for a description of the TLV list and all available paramaters.

bool SetParameters(const byte *TLV,int ByteCount)

Parameters:
const byte *TLV Pointer to an array of bytes, which contains the TLV list.
int ByteCount Length counted in bytes, the TLV list contains.
Return: The function returns true, if the parameters was set to the new value. Oth-
erwise the function returns false.
Example:

// This sample demonstrates a call of function SetParameters.
const byte TLVBytes[] =

{
ICLASS_READMODE, 1, ICLASS_READMODE_PAC, // Read PAC from iClass.
INDITAG_READMODE, 1, INDITAG_READMODE_2, // Set Inditag readmode 2
TLV_END // End of TLV

}s

int main(void)

{
/] ...
SetParameters (TLVBytes,sizeof (TLVBytes)) ;
/] ...

}

Page 14 of 204

ELATEC

1 System Functions

1.11 GetLastError

This function allows to read the last error code, which was generated by any system function. For a list of
available error code see chapter System Errors.

unsigned int GetLastError(void)

Parameters: None.
Return: The error code.

Page 15 of 204

2 I/O Functions

ELATEC
oy

2 1/0 Functions

2.1 Configuration

2.1.1 Set COM-Port Parameters

This function can be used to configure the asynchronous serial communication ports COM1 and COM2.

bool SetCOMParameters
(

int Channel,

TCOMParameters* COMParameters

)

Parameters:

int Channel

Specify the communication port which shall be configured. Use one of the
predefined constants CHANNEL_COM1 or CHANNEL_COM2.

TCOMParameters* Reference to the structure that holds the communication parameters. See

COMParameters the description of TCOMParameters for details.

Return: If the operation was successful, the return value is true, otherwise it is

false.
Members Length | Description
(Bits)

unsigned long BaudRate 32 This member holds the baud rate.

byte WordLength 8 This member holds the word-length in bits. Use the prede-
fined constant COM_WORDLENGTH_S.

byte Parity 8 This member holds the type of parity to be used. Use one of
the predefined constants COM_PARITY_NONE, COM_PARITY_ODD
or COM_PARITY_EVEN.

byte StopBits 8 This member holds the number of stop bits. Use one of the
predefined constants COM_STOPBITS_0_5, COM_STOPBITS_1,
COM_STOPBITS_1_5 or COM_STOPBITS_2.

byte FlowControl 8 This member holds the type of flow control to be used. Use
the predefined constant COM_FLOWCONTROL _NONE.

Table 2.1: Definition of TCOMParameters

Page 16 of 204

2 /O Functions ELATEC

2.1.2 Get USB Device State

This function returns the functional state of the USB-controller in case the reader is running as USB-device.

int GetUSBDeviceState(void);

Parameters: None.

Return: Depending on the functional state, the return value is one of the prede-
fined constants USB_DEVICE_STATE_DEFAULT, USB_DEVICE_STATE_ADDRESSED,
USB_DEVICE_STATE_CONFIGURED Or USB_DEVICE_STATE_SUSPENDED.

2.1.3 Get Host Channel

This function returns the channel, which is actually configured for host communication.

int GetHostChannel (void);

Parameters: None.

Return: The return value is one of the predefined constants CHANNEL_NONE,
CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2 or CHANNEL_I2C.

2.2 Miscellaneous Functions

2.2.1 Wake Up Host

This function allows to remotely wake up a host, which is connected via USB. This function is supported
by USB keyboard only.

void USBRemoteWakeup(void) ;
Parameters: None.

Return: None.

2.3 Datal/O

2.3.1 Query I/O Buffer Size

Use this function to retrieve the input/output buffer size of a specific communication channel.

int GetBufferSize
(
int Channel,
int Dir

)

Page 17 of 204

2 I/O Functions

ELATEC
oy

Parameters:

int Channel

int Dir

Return:

Specify the communication channel. Use one of the predefined con-
stants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2, CHANNEL_CCID_DATA,
CHANNEL_CCID_CTRL, CHANNEL_I2C or CHANNEL_RNG.

Specify the direction. Use one of the predefined constants DIR_OUT or
DIR_IN.

The buffer size in bytes.

2.3.2 Get I/0 Buffer Byte Count

Use this function to retrieve the number of bytes that are actually stored in the respective 1/0 buffer. In
case of querying the output direction, the functions returns the number of bytes that have not been sent
yet, in case of the input direction the number of available bytes that can be read is returned.

int GetByteCount
(
int Channel,
int Dir

)

Parameters:

int Channel

int Dir

Return:

2.3.3 Test Empty

Specify the communication channel. Use one of the predefined con-
stants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2, CHANNEL_CCID_DATA,
CHANNEL_CCID_CTRL, CHANNEL_I2C or CHANNEL _RNG.

Specify the direction. Use one of the predefined constants DIR_OUT or
DIR_IN.

The number of bytes that are stored in the buffer.

Check if there are any bytes in the specified I/O buffer.

bool TestEmpty
(
int Channel,
int Dir

)

Parameters:

int Channel

int Dir

Return:

Specify the communication channel. Use one of the predefined con-
stants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2, CHANNEL_CCID_DATA,
CHANNEL_CCID_CTRL, CHANNEL_I2C or CHANNEL_RNG.

Specify the direction. Use one of the predefined constants DIR_OQUT or
DIR_IN.

If the buffer is empty, the return value is true, otherwise it is false.

Page 18 of 204

2 /O Functions ELATEC

2.3.4 Test Full

Check if the specified I/O buffer can receive any further data.

bool TestFull
(

int Channel,

int Dir
)
Parameters:
int Channel Specify the communication channel. Use one of the predefined con-
stants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2, CHANNEL_CCID_DATA,
CHANNEL_CCID_CTRL, CHANNEL_I2C or CHANNEL_RNG.
int Dir Specify the direction. Use one of the predefined constants DIR_OUT or
DIR_IN.
Return: If the buffer is full, the return value is true, otherwise it is false.

2.3.5 Send Byte

Use this function to send one byte through a specific communication channel. If the respective output
buffer is completely occupied, the function blocks until there is enough space.

void WriteByte
(

int Channel,

byte Byte
);
Parameters:
int Channel Specify the communication channel. Use one of the predefined con-
stants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2, CHANNEL_CCID_DATA,
CHANNEL_CCID_CTRL or CHANNEL_I2C.
byte Byte The byte to be sent.
Return: None.

2.3.6 Send Multiple Bytes

Use this function to send multiple bytes through a specific communication channel. If there is not enough
space in the respective output buffer, the function sends the number of bytes that fit into the buffer and
returns this value.

int WriteBytes
(
int Channel,
const bytex Bytes,
int ByteCount
)3

Page 19 of 204

2 I/O Functions

ELATEC
oy

Parameters:

int Channel

const byte* Bytes

Return:

2.3.7 Read Byte

Specify the communication channel. Use one of the predefined con-
stants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2, CHANNEL_CCID_DATA,
CHANNEL_CCID_CTRL or CHANNEL_I2C.

The bytes to be sent.
Number of bytes sent.

Use this function to read a byte from the input buffer of a specific communication channel. If there is no
byte available, the function blocks until there is one.

byte ReadByte
(
int Channel

)

Parameters:

int Channel

Return:

Specify the communication channel. Use one of the predefined con-
stants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2, CHANNEL_CCID_DATA,
CHANNEL_CCID_CTRL, CHANNEL_I2C or CHANNEL_RNG.

The byte which was read from the input buffer.

2.3.8 Read Multiple Bytes

Use this function to read a desired number of bytes from the input buffer of a specific communication
channel. If there is less data available than desired, the function reads the available number of bytes.

int ReadBytes
(
int Channel,
byte* Bytes,
int ByteCount
)3

Parameters:

int Channel

bytex Bytes
int ByteCount

Return:

Specify the communication channel. Use one of the predefined con-
stants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2, CHANNEL_CCID_DATA,
CHANNEL_CCID_CTRL, CHANNEL_I2C Oor CHANNEL_RNG.

The received data is stored in this buffer.
Specify the number of bytes to be read.
The byte which was read from the input buffer.

Page 20 of 204

ELATEC
oy

3 Memory Functions

3 Memory Functions

3.1 Byte Operations

3.1.1 Compare Bytes

Compare two byte arrays.

bool CompBytes
(
const byte* Datal,
const byte* Data2,
int ByteCount
)3

Parameters:

const byte* Datal Reference to an array of bytes.

const byte* Datal Reference to an array of bytes.

int ByteCount Number of bytes (beginning from index 0) to be compared.

Return: If the two arrays are identical, the return value is true, otherwise it is false.

3.1.2 Copy Bytes

Copy bytes from a source to a destination. Source and destination may be identical and the source section
may overlap the destination. Depending on that, the correct method for copying will be chosen.

void CopyBytes

(

byte*x DestBytes,

const bytex SourceBytes,
int ByteCount

)3

Parameters:

byte* DestBytes Reference to an array of bytes which is the destination of the copy operation.
const bytex SourceBytes Reference to an array of bytes which is the source of the copy operation.
int ByteCount Number of bytes to be copied.

Return: None.

Page 21 of 204

ELATEC
o]

3 Memory Functions

3.1.3 Fill Bytes
Fill bytes within a given array with a value.

void FillBytes
(
byte* Dest,
byte Value,
int ByteCount
)s
Parameters:
byte* Dest Reference to an array of bytes which is the destination for the operation.
byte Value The byte value with which the array will be filled.
int ByteCount Number of bytes to be filled.

Return: None.

3.1.4 Swap Bytes
Swap the order of bytes within an array.

void SwapBytes
(

byte* Data,

int ByteCount

);
Parameters:
byte* Data Reference to an array of bytes which is the destination for the operation.
int ByteCount Number of bytes to be swapped.

Return: None.

3.2 Bit Operations

Bit operations are working on bit fields. A bit field is represented by an array of bytes. The diagram below
shows how bit operations are interpreting a given bit offset within an array of bytes:

Array of Bytes
Byte Index 0 1 2

Bit of Byte
MSB LSB

NSLIE S S e e e e e s e e s

10 11 12 13 14 15 16 17 18 19 20 21 22 23

O -
T -
~
00 =
© -

1 L 1
LIS
BitOffset 0 1 2 3 4

3.2.1 Read Bit

Read the value of one single bit within a bit field.

Page 22 of 204

ELATEC

3 Memory Functions

bool ReadBit

(
const bytex Byte,

int BitNr
)
Parameters:
const byte* Byte Reference to an array of bytes which represents the bit field where one bit
shall be read.
int BitNr Position of the bit within the bit field.
Return: The bit value: true means 1, false means 0.
3.2.2 Write Bit

Set one single bit within a bit field to a given value.

void WriteBit
(

bytex Byte,
int BitNr,
bool Value
)
Parameters:
byte* Byte Reference to an array of bytes which represents the bit field where one bit
shall be written.
int BitNr Position within the bit field, where the bit is to be written.
bool Value The bit value: true means 1, false means 0.
Return: None.
3.2.3 Copy Bit

Copy one single bit from a source to a destination. Source and destination may be identical.

void CopyBit
(
byte* Dest,
int DestBitNr,
const byte* Source,
int SourceBitNr

)

Page 23 of 204

ELATEC
oy

3 Memory Functions

Parameters:

byte* Dest Reference to an array of bytes which is the destination for the operation.
int DestBitNr Position within the destination bit field, where the bit is copied to.

const byte* Source Reference to an array of bytes which is the source for the operation.

int SourceBitNr Position within the source bit field, where the bit is copied from.

Return: None.

3.2.4 Compare Bits

Compare two bit sets.

bool CompBits
(
const bytex Datal,
int DatalStartBit,
const bytex Data2,
int Data2StartBit,
int BitCount

)
Parameters:
const byte* Datal Reference to an array of bytes which represents a bit field.
int DatalStartBit Start-index (beginning from 0) of the first bit field.
const byte* Data2 Reference to an array of bytes which represents a bit field.
int DatalStartBit Start-index (beginning from 0) of the second bit field.
int BitCount Number of bits to be compared.
Return: If the two bit-sets are identical, the return value is true, otherwise it is false.

3.2.5 Copy Bits

Copy bits from a source to a destination. Source and destination may be identical and the source section
may overlap the destination. Depending on that, the correct method for copying will be chosen.

void CopyBits
(
byte* DestBits,
int StartDestBit,
const byte* SourceBits,
int StartSourceBit,
int BitCount
)

Page 24 of 204

ELATEC
oy

3 Memory Functions

Parameters:

byte* DestBits Reference to an array of bytes which represents a bit field which is the des-
tination of the copy operation.

int StartDestBit First bit within the destination bit field where the bits are copied to.

const byte* SourceBits Reference to an array of bytes which represents a bit field which is the
source of the copy operation.

int StartSourceBit First bit within the source bit field where the bits are copied from.
int BitCount Number of bits to be copied.
Return: None.

3.2.6 Fill Bits

Fill bits within a given bit field with either 0 or 1.

void FillBits

(
bytex Dest,
int StartBit,
bool Value,
int BitCount
)
Parameters:
byte* Dest Reference to an array of bytes which represents a bit field which is the des-
tination for the operation.
int StartBit First bit within the bit field where the bits are filled.
bool Value The bit value: true means 1, false means 0.
int BitCount Number of bits to be filled.
Return: None.

3.2.7 Swap Bits

Swap the order of bits within a bit field.

void SwapBits
(
byte* Data,
int StartBit,
int BitCount
);

Page 25 of 204

ELATEC

3 Memory Functions

Parameters:
byte* Data Reference to an array of bytes which represents a bit field which is the des-
tination for the operation.
int StartBit First bit within the bit field where bits are swapped.
int BitCount Number of bits to be swapped.
Return: None.
3.2.8 Count Bits
Count the number of ones or zeros within a bit field.
int CountBits
(
const byte* Data,
int StartBit,
bool Value,
int BitCount
);
Parameters:
const byte* Data Reference to an array of bytes which represents a bit field.
int StartBit First bit within the bit field where counting shall start.
bool Value The bit value: true means count ones, false means count zeros.
int BitCount Size of the bit field.
Return: Number of counted bits.

Page 26 of 204

ELATEC
oy

4 Peripheral Functions

4 Peripheral Functions

4.1 General Purpose Inputs/Outputs (GPIOs)

4.1.1 Configuration
4.1.1.1 Outputs

Use this function to configure one or several GPIOs as output. Each output can be configured to have an
integrated pull-up or pull-down resistor. The output driver characteristic is either Push-Pull or Open Drain.

void GPIOConfigureOutputs
(
int Bits,
int PullUpDown,
int OutputType
)s

Parameters:

int Bits Specify the GPIOs that shall be configured for output. Several GPIOs can
be configured simultaneously by using the bitwise or-operator (]). Use the
predefined constants GPI00 through GP107 for specifying the GPIOs.

int PullUpDown Specify the behaviour of the internal weak pull-up/down resistor. Use
one of the predefined constants GPI0_PUPD_NOPULL, GPIO_PUPD_PULLUP or
GPIO_PUPD_PULLDOWN.

int OutputType Specify the output driver characteristic. Use one the predefined constants
GPIO_OTYPE_PUSHPULL or GPIO_OTYPE_OPENDRAIN.

Return: None.

4.1.1.2 Inputs

Use this function to configure one or several GPIOs as input. Each output can be configured to have an
integrated pull-up or pull-down resistor, alternatively it can be left floating.

void GPIOConfigurelnputs
(
int Bits,
int PullUpDown
)3

Page 27 of 204

ELATEC
oy

4 Peripheral Functions

Parameters:

int Bits Specify the GPIOs that shall be configured for input. Several GPIOs can
be configured simultaneously by using the bitwise or-operator (]). Use the
predefined constants GPI00 through GPI07 for specifying the GPIOs.

int PullUpDown Specify the behaviour of the internal weak pull-up/down resistor. Use
one of the predefined constants GPI0O_PUPD_NOPULL, GPIO_PUPD_PULLUP oOr
GPIO_PUPD_PULLDOWN.

Return: None.

4.1.2 Basic Port Functions
4.1.2.1 Set GPIOs to Logical Level

Use this function to set one or several GPIOs to logical high or low level. The respective ports must have
been configured to output in advance.

void GPIOSetBits(int Bits);
void GPIOClearBits(int Bits);

Parameters:

int Bits Specify the GPIOs that shall be set to a logical level. Several GPIOs can
be handled simultaneously by using the bitwise or-operator (|). Use the
predefined constants GPI00 through GP107 for specifying the GPIOs.

Return: None.

4.1.2.2 Toggle GPIOs

Use this function to toggle the logical level of one or several GPIOs. The respective ports must have been
configured to output in advance.

void GPIOToggleBits
(

int Bits
);
Parameters:
int Bits Specify the GPIOs that shall be toggled. Several GPIOs can be handled
simultaneously by using the bitwise or-operator (|). Use the predefined con-
stants GPI00 through GP107 for specifying the GPIOs.
Return: None.

4.1.2.3 Waveform Generation

Use this function to generate a pulse-width modulated square waveform with constant frequency on one
or several GPIOs. The respective ports must have been configured to output in advance.

Page 28 of 204

ELATEC
oy

4 Peripheral Functions

void GPIOBlinkBits
(
int Bits,
int TimeHi,
int TimeLo

)

Parameters:

int Bits Specify the GPIOs that shall generate the waveform. Several GPIOs can
be handled simultaneously by using the bitwise or-operator (|). Use the
predefined constants GPI00 through GP107 for specifying the GPIOs.

int TimeHi Specify the duration for logical high level in milliseconds.

int TimeLo Specify the duration for logical low level in milliseconds.

Return: None.

4.1.2.4 Read GPIOs

Use this function to read the logical level of one GPIO that has been configured as input.

int GPIOTestBit
(

int Bit
)s
Parameters:
int Bits Specify the GPIO that shall be read. Use one of the predefined constants
GPI00 through GPI07 for specifying the GPIO.
Return: If the GPIO has logical high level, the return value is 1, otherwise it is 0.

4.1.3 Higher Level Port Functions
4.1.3.1 Send Data in Wiegand Format

Use this function to send a bitstream via a software emulated Wiegand interface. A Wiegand interface
uses two data lines, one line is used to transmit ones, the other one is used to transmit zeros. Each GPIO
can be individually configured to act as data line. Note that the integrated API LED-functions are working
with GPIOO0 to GPIO2 by default, so the Wiegand data lines should be selected carefully.

void SendWiegand(int GPIODataO,int GPIODatal,int PulseTime,
int IntervalTime,byte* Bits,int BitCount);

Page 29 of 204

ELATEC
o]

4 Peripheral Functions

Parameters:

int GPIODataO Specify the GPIO that shall be used to transmit zeros. Use one of the pre-
defined constants GPI00 through GPI07 for specifying the GPIO.

int GPIODatal Specify the GPIO that shall be used to transmit ones. Use one of the prede-
fined constants GP100 through GPI07 for specifying the GPIO.

int PulseTime Specify the pulse duration in microseconds.

int IntervalTime Specify the duration in microseconds between consecutive pulses.

byte* Bits Reference to an array of bytes which represents a bit field which holds the
data to be sent.

int BitCount Specify the number of bits to be sent.

Return: None.

See timing diagram below for details about how the timing values are used:

SN 1]
- |] T

<] - |

IntervalTime PulseTime

Example:

Here is an example which shows minimum code for doing a Wiegand output:

// Init Section:

// Use GPIO2 and GPIO3 for Wiegand interface
GPIOConfigureOutputs(GPIO2 | GPIO3,GPIO_PUPD_NOPULL,GPIO_OTYPE_PUSHPULL) ;
// Enter idle level. In this case we have active low outputs
GPIOSetBits(GPIO2 | GPIO3);

// Prepare some Wiegand data:

byte Bits[4];

Bits[0] = 0x12;

Bits[1] 0x34;

Bits[2] 0x56;

Bits[3] = 0x78;

// Now send the bits

SendWiegand (GPI02,GPI03,100,1000,Bits,32);

Il

Note:

« Itis up to the App to complete Wiegand data with parity bits and decide number of bits. In this way
the App is fully flexible regarding data to be sent.

» Theidle level of the Wiegand interface is determined by state of the outputs before calling SendWiegand.
It must be setup by a separate call to GPI0SetBits or GPI0ClearBits depending on the require-
ments of the underlying hardware.

» The GPIOs might need additional circuitry against shortcut or voltage level depending on the in-
tended application.

Page 30 of 204

ELATEC
o]

4 Peripheral Functions

4.1.3.2 Send Data in Omron Format

Use this function to send a bit stream via a software-emulated Omron interface. An Omron interface
uses two lines for data transmission, one for clock and one for the data bit stream. Each GPIO can be
individually configured to act as data or clock line. Note that the integrated API LED-functions are working
with GPIOO0 to GPIO2 by default, so the Omron interface lines should be selected carefully.

void SendOmron(int GPIOClock,int GPIOData,int T1,int T2,int T3,
byte* Bits,int BitCount);

Parameters:

int GPIOClock Specify the GPIO that shall be used for generating the clock signal. Use one
of the predefined constants GPI00 through GPI07 for specifying the GPIO.

int GPIOData Specify the GPIO that shall be used for data transmission. Use one of the
predefined constants GPI00 through GP107 for specifying the GPIO.

int T1

int T2

int T3

byte* Bits Reference to an array of bytes which represents a bit field which holds the
data to be sent.

int BitCount Specify the number of bits to be sent.

Return: None.

See timing diagram below for details about how the timing values are used:

~ [LT

Data 1

- || le

T1 T2 T3

Example:

Here is an example which shows minimum code for doing a clock/data output:

// Init Section:

// Use GPIO2 and GPIO3 for the clock/data interface
GPIOConfigureOutputs(GPIO2 | GPIO3,GPIO_PUPD_NOPULL,GPIO_OTYPE_PUSHPULL) ;
// Enter idle level. In this case we have active low outputs
GPI0SetBits(GPIO2 | GPIO3);

// Prepare some data:

byte Bits[4];

Bits[0] = 0x12;

Bits[1] 0x34;

Bits[2] 0x56;

Bits[3] = 0x78;

// Now send the bits

SendOmron (GPI02,GPI03,500,1000,500,Bits,32);

Note:

Page 31 of 204

ELATEC
oy

4 Peripheral Functions

* Itis up to the App to complete data with parity bits and decide number of bits. In this way the App is
fully flexible regarding data to be sent.

» Theidle level of the clock/data interface is determined by state of the outputs before calling SendOmron.
It must be setup by a separate call to GPI0SetBits or GPIOClearBits depending on the require-
ments of the underlying hardware.

» The GPIOs might need additional circuitry against shortcut or voltage level depending on the in-
tended application.

4.2 Beeper
Use this function to sound a beep at the dedicated beeper port.

void Beep
(
int Volume,
int Frequency,
int OnTime,
int OffTime
);

Parameters:
int Volume Specify the volume in percent from 0 to 100.
int Frequency Specify the frequency in Hertz.
int OnTime Specify the duration of the beep in milliseconds.
int 0ffTime Specify the length of the pause after the beep. This is useful for generating
melodies. If this is not required, the parameter may have the value 0.
Return: None.
4.3 LEDs

4.3.1 General Purpose LED Functions

These functions are related for usage with TWN4 Desktop and TWN4 Panel where the different LEDs have
a dedicated connection scheme. The LEDs are connected as follows:

* GPIO0O — Red
* GPIO1 — Green

* GPIO2 — Yellow (Panel version only)

4.3.1.1 Initialization

Use this macro to initialize the respective GP1Os to drive LEDs.

Page 32 of 204

4 Peripheral Functions

ELATEC
oy

LEDInit (LEDs);

Parameters:
LEDs

Return:

4.3.1.2 Set LEDs On/Off

Specify the GPIOs that shall be configured for LED operation. Several
GPIOs can be configured simultaneously by using the bitwise or-operator
(])- Use the predefined constants REDLED, GREENLED or YELLOWLED for speci-
fying the GPIOs.

None.

Use these macros to set one or several LEDs on/off.

LEDOn (LEDs) ;
LEDOff (LEDs) ;

Parameters:
LEDs

Return:

4.3.1.3 Toggle LEDs

Specify the LEDs that shall be set on/off. Several LEDs can be handled
simultaneously by using the bitwise or-operator (|). Use the predefined con-
stants REDLED, GREENLED or YELLOWLED for specifying the LEDs.

None.

Use this macro to toggle one or several LEDs.

LEDToggle (LEDs) ;

Parameters:
LEDs

Return:

4.3.1.4 Blink LEDs

Specify the LEDs that shall be toggled. Several LEDs can be handled simul-
taneously by using the bitwise or-operator (|). Use the predefined constants
REDLED, GREENLED or YELLOWLED for specifying the LEDs.

None.

Use this macro to let one or several LEDs blink.

LEDBlink (LEDs, TimeOn, TimeOff);

Page 33 of 204

4 Peripheral Functions

ELATEC
oy

Parameters:

LEDs

TimeOn
TimeOff

Return:

4.3.1.5 Get LED State

Specify the LEDs that shall blink. Several LEDs can be handled simulta-
neously by using the bitwise or-operator (|). Use the predefined constants
REDLED, GREENLED or YELLOWLED for specifying the LEDs.

Specify the on-time in milliseconds.
Specify the off-time in milliseconds.
None.

Use this macro to determine if a LED is on or off.

LEDIsOn(LED) ;

Parameters:
LED

Return:

4.3.2 Diagnostic LED

Specify the LED that shall be queried. Use one of the predefined constants
REDLED, GREENLED or YELLOWLED for specifying the LED.

If the queried LED is on, the return value is 1, otherwise it is 0.

The TWN4 Core Module has one integrated LED that can be used for diagnostic purposes. There is no

initialization necessary.

4.3.2.1 Set Diagnostic LED On/Off

Use these functions to set the diagnostic LED on or off.

void DiagLEDOn(void);
void DiagLEDOff (void);

Parameters:

Return:

None.
None.

4.3.2.2 Toggle Diagnostic LED

Use this function to toggle the diagnostic LED.

void DiagLEDToggle(void);

Parameters:

Return:

None.
None.

Page 34 of 204

ELATEC

4 Peripheral Functions

4.3.2.3 Get LED State
Use this function to determine if the diagnostic LED is on or off.
bool DiagLEDIsOn(void);

Parameters: None.
Return: If the diagnostic LED is on, the return value is true, otherwise it is false.

Page 35 of 204

5 Conversion Functions ELATEC

5 Conversion Functions

5.1 Hexadecimal ASCII to Binary
5.1.1 Scan Hexadecimal Character
Convert an ASClI-character which represents a hexadecimal number into its binary representation.

int ScanHexChar

(

byte Char
);
Parameters:
byte Char ASCIll-coded hexadecimal character. The input value may be one of the
characters ’0’-’9’, ’a’-'f’ or 'A’-’F’.
Return: If the character is a valid hexadecimal expression, the return value is the

binary representation (a number between 0 and 15), else it is -1.

5.1.2 Scan Hexadecimal String

Convert an array of bytes containing ASCII characters which represents hexadecimal numbers into their
binary representation. The conversion is done in place. This means that after successful conversion,
number of valid bytes is half of the given count of ASCII characters (two hex digits represent one binary
byte).

int ScanHexString

(

bytex ASCII,
int ByteCount
)3

Parameters:

bytex ASCII Reference to an array of ASCIl-coded hexadecimal characters. The array
may contain the characters '0’-’9’, ’a’-'f’ or 'A’-'F’. The array is also the desti-
nation for the operation.

int ByteCount Number of (ASCII-) bytes to be converted.

Return: Number of successfully converted bytes.

Page 36 of 204

5 Conversion Functions

ELATEC
oy

5.2 Binary to Hexadecimal ASCII

Convert a number, which is given as a bit field into ASCII format, and store it in an array of bytes. The
conversion is made in the following sequence:

1. Convert the binary data to a number of digits, which is determined by the parameter MaxDigits. If
MaxDigits is 0, then the number of digits is determined by the binary data itself.

2. If the result of the conversion is less than the number of digits specified by MinDigits, precede the
converted number with zeros according to MinDigits.

int ConvertBinaryToString
(
const bytex SourceBits,
int StartBit,
int BitCnt,
char* String,
int Radix,
int MinDigits,
int MaxDigits
)3

Parameters:

const byte* SourceBits A reference to an array of bytes, which contains the bit field.

int StartBit Index of the first bit to be converted.

int BitCnt The number of bits, which are valid within the array of bytes.

char* String A reference to an array of bytes, which receives the result of the conversion.
int Radix Base for conversion, use:

+ 2 for binary conversion

« 8 for octal conversion

» 10 for decimal conversion

» 16 for hexadecimal conversion

int MinDigits Specifies the minimum number of digits, the output should contain. If
MinDigits is 0, then at least 1 digit is sent. If MinDigits is greater than the
actual width of the number to be converted, then the number is preceded by
zeros.

int MaxDigits Specifies the maximum number of digits, the output should contain. This
allows inhibit of leading digits of an output. If MaxDigits is 0, then the number
of digits is determined by the given binary data itself.

Return: The actual number of ASCII bytes, which has been stored in the array
String.

Page 37 of 204

6 12C Functions ELATEC

RFID Systems

6 12C Functions

This chapter describes functions for accessing the 12C interface of TWN4. 12C is also known as TWI
(Two-Wire Interface).

6.1 Initialization/Deinitialization

6.1.1 12ClInit

bool I2CInit(int Mode) ;

Parameters:
int Mode This value specifies the mode of operation.
Return: If the operation was successful, the return value is true, otherwise it is
false.
6.1.2 12CDelnit
void I2CDeInit(void);
Parameters: None.
Return: None.

6.1.3 Examples

// Initialize as master
I2CInit (I2CMODE_MASTER) ;

// Initialize as slave.
// I2CMODE_SLAVE: Setup interface as slave

// 0x30: Address of of this slave

// I2CMODE_CHANNEL: Do communication via channels (this is the
// only currently available option, therefore
// a must to be specified)

I2CInit (I2CMODE_SLAVE | 0x30 | I2CMODE_CHANNEL) ;

6.2 Communication (Master)

6.2.1 12CMasterStart

Generate a 12C start sequence.
void I2CMasterStart(void);

Parameters: None.
Return: None.

Page 38 of 204

6 12C Functions ELATEC

6.2.2 12CMasterStop

Generate a 12C stop sequence.

void I2CMasterStop(void);

Parameters: None.
Return: None.

6.2.3 12CMasterTransmitByte

Transmit one byte to a slave.

void I2CMasterTransmitByte(byte Byte);

Parameters:
byte Byte The byte to be transmitted to the slave.
Return: None.

6.2.4 12CMasterReceiveByte

Receive one byte from a slave.

byte I2CMasterReceiveByte(void);

Parameters: None.
Return: The byte read from the slave.

6.2.5 12CMasterBeginWrite

Begin a write sequence. This will send the target slave address together with R/W-bit set to write.

void I2CMasterBeginWrite(int Address);

Parameters:
int Address The target slave address, a value from 0 to 127.
Return: None.

6.2.6 12CMasterBeginRead

Begin a read sequence. This will send the target slave address together with R/W-bit set to read.

void I2CMasterBeginRead(int Address);

Parameters:
int Address The target slave address, a value from 0 to 127.
Return: None.

Page 39 of 204

6 12C Functions ELATEC

6.2.7 12CMasterSetAck
Set ACK state of the master. This ACK will be sent after receiption of one byte from the slave.
void I2CMasterSetAck(bool SetOn);
Parameters:
bool SetOn Set this value to true to turn acknowledge on or false to turn acknowledge
off. Definitions ON or OFF may be used for better readability.
Return: None.

6.2.8 Examples

// This sample demonstrates transmission and receiption of data
// to/from a I2C-slave

// This is the address of the slave
const int I2CAddress = 0x30;

// Init the I2C port

I2CInit (I2CMODE_MASTER) ;

// Send two bytes to the slave
I2CMasterStart();
I2CMasterBeginWrite (I2CAddress) ;
I2CMasterTransmitByte (0x12) ;
I2CMasterTransmitByte (0x34) ;
I2CMasterStop() ;

// Receive three bytes from the slave
byte Bytes[3];

I2CMasterStart();

I2CMasterBeginRead (I2CAddress) ;

// All bytes except last byte require an ACK to be sent
I2CMasterSetAck (ON) ;

Bytes[0] = I2CMasterReceiveByte();
Bytes[1] = I2CMasterReceiveByte();

// Turn off ACK before reading last byte
I2CMasterSetAck (OFF) ;

Bytes[2] = I2CMasterReceiveByte();
I2CMasterStop() ;

6.3 Communication (Slave)

Communication as a 12C slaves works with well-defined 12C packets, which must be sent between master
and slave (TWN4).

The communication is performed via normal communication channels. Therefore, for transmitting and
receiving data, the normal 10-functions must be used. These are WriteByte, ReadByte and so on. In
case of communication via 12C, the channel 4 must be used. There is a definition for this channel, which
is CHANNEL_I2C.

As a conclusion, TWN4 offers a easy method of changing communication from USB or RS232 to 12C just
by changing the communication channel. Only care must be taken to avoid buffer overflow. This can be

Page 40 of 204

6 12C Functions ELATEC

achieved by calling appropriate IO-functions TestEmpty and TestFull. On the other hand many commu-
nication protocols avoid a buffer overflow by their inherent flow of communication (e.g. command/response
protocol).

The specification for the format of the packets sent/reveived on the 12C bus is as follows:

6.3.1 Slave to Master

1 Byte Address/Read

1 Byte Buffer status: Bits 7..4 hold the number of bytes, which are available to be
read from the slave. Bits 3..0 hold the maximum number of bytes, which
may be sent to slave.

n Bytes Payload, where n is 0..15. Note: Due to the fact, that ACK must be turned
off one byte before the master receives last byte, it is useful to check buffer
status and receive bytes in separate read operations.

6.3.2 Master to Slave

1 Byte Address/Write
n Bytes Payload, where nis 1..15

6.3.3 Examples

This is a implementation of a 12C master communication, which routes USB- or RS232-interface to the
[2C-interface of a TWN4 Core Module. In order to test this example, two TWN4 Core Modules are re-
quired:

* 1 TWN4 Core Module, which is running as 12C slave

* 1 TWN4 Core Module, which is running as 12C master.

//

// TWN4 App: I2C master, which routes USB or RS232-traffic to I2C
//

#include "twn4.sys.h"

#include "apptools.h"

int main(void)

{
const int I2CAddress = 0x30;
// USB or RS232 depends on which cable is connected
int HostChannel = GetHostChannel();

I2CInit (I2CMODE_MASTER) ;
while (true)
{
int I2CRXTXCount;
int TransferCount;

I2CMasterStart();
I2CMasterBeginRead (I2CAddress) ;
I2CMasterSetAck (OFF) ;

Page 41 of 204

6 12C Functions ELATEC

I2CRXTXCount = I2CMasterReceiveByte();
I2CMasterStop() ;

[/ Rokokokok sk sk ko ko ok ok ok ok ok ok ok ok kK ok ok ok ok ok ok ok ok ok K K K o ok ok ok ok ok ok ok sk ok K K ok ok ok ok ok ok ok K K

// *xkxkx Direction Host -> T2C skskskokskokokskokskskokk sk ok sk ok sk sk ok sk ok sk ok sk ok ok 5k

[/ EEokoksk ok kook ok ok sk ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok sk ok ok ok ok o ok ok sk ok ok ok ok ok ok ok K

TransferCount = MIN(GetByteCount (HostChannel,DIR_IN),
I2CRXTXCount & OxOF);

if (TransferCount > 0)

{
I2CMasterStart();
I2CMasterBeginWrite (I2CAddress) ;
while (TransferCount-- > 0)
I2CMasterTransmitByte (ReadByte (HostChannel)) ;
I2CMasterStop();
}

[/ Aok Kok oK ok ook ok o oK ok ok ok ok K Kok ok ok KoK KoK oK oK ok oK sk ok K sk ok K sk ok Kok Kok K ok K
// **kkxx*x Direction I2C -> Host kkskskokokskskokokskokskokokokskokokskokokokokokkokok ok
[/ Rk Kok Kok ok Kok ok ok ok ok ok ok ok ok ok K ok Kok o K ok ok ok ok ok ok ok ok Kok Kok K ok K
TransferCount = MIN(GetBufferSize (HostChannel,DIR_QUT)-
GetByteCount (HostChannel ,DIR_0OUT),
I2CRXTXCount >> 4);

if (TransferCount > 0)
{

I2CMasterStart();

I2CMasterBeginRead (I2CAddress) ;

I2CMasterSetAck(ON) ;

// Flush RX/TX byte count

I2CMasterReceiveByte() ;

// Read data except last byte

while (TransferCount-- > 1)

WriteByte (HostChannel,I2CMasterReceiveByte());

// Turn off ACK before reading last byte

I2CMasterSetAck (OFF) ;

WriteByte (HostChannel,I2CMasterReceiveByte());

I2CMasterStop();

Page 42 of 204

7 SPI Functions ELATEC

7 SPI Functions

This chapter describes functions for accessing the SPI interface of TWN4. Currently, the SPI interface can
be operated as master.

7.1 Initialization/Deinitialization

7.1.1 SPliInit

Initialize communication via SPI interface.

bool SPIInit(const TSPIParameters *SPIParameters);

Parameters:

const TSPIParameters Pointer to a structure, which specifies mode of operation.
*SPIParameters

Return: If the operation was successful, the return value is true, otherwise it is
false.

The members of structure TSPIParameters are defined as follows:

Members Length| Description
(Bits)
byte Mode 8 Mode of operation. Please always specify SPI_MODE_MASTER
here.
byte CPOL 8 Polarity if clock signal (SPI_SCK). Specify sSPI_CPOL_LOW for

idle/inactive low or SPI_CPOL_HIGH for idle/inactive high.

byte CPHA 8 Active edge of SPI_SCK. Specify SPI_CPHA_EDGE1 for first
edge or SPI_CPHA_EDGE2 for second edge. In conjunction
with the polarity of the clock signal this leads to active edge,
which is either rising or falling.

byte ClockRate 8 Specify clock rate of SPI_SCK. Valid values are
SPI_CLOCKRATE_117_KHZ, SPI_CLOCKRATE_234_KHZ,
SPI_CLOCKRATE_469_KHZ, SPI_CLOCKRATE_938_KHZ,
SPI_CLOCKRATE_1_88_MHZ, SPI_CLOCKRATE_3_75_MHZ,

SPI_CLOCKRATE_7_5_MHZ or SPI_CLOCKRATE_15_MHZ

byte BitOrder 8 Specify order of data bits on data lines (SPI_MISO and
SPI_MOSI). Specify sPI_FIRSTBIT_MSB for idle/inactive low
or SPI_FIRSTBIT_LSB for idle/inactive high.

Table 7.1: Definition of TSPIParameters

Page 43 of 204

7 SPI Functions ELATEC

7.1.2 SPIDelnit

Deinitialize SPI interface.
void SPIDeInit(void);

Parameters: None.

Return: None.

7.2 Communication

7.2.1 SPIMasterBeginTransfer

Begin a transfer via SPI interface. This function sets signal SPI_SS- to active, thus low.

void SPIMasterBeginTransfer(void);

Parameters: None.

Return: None.

7.2.2 SPIMasterEndTransfer

End a transfer via SPI interface. This function sets signal SPI_SS- to inactive, thus high.

void SPIMasterEndTransfer(void);

Parameters: None.

Return: None.

7.2.3 SPITransceive

Send and receive a number of bytes to/from the slave. Background: SPI is a full duplex communication
link. This allows to send and receive data at the same time. With every clock pulse, a bit is sent to the
slave, another bit is received from the slave.

bool SPITransceive(const byte *TXData,byte *RXData,int ByteCount);

Parameters:

const byte *TXData Pointer to an array of bytes being transmitted to the slave.

byte *RXData Pointer to an array of bytes being received from the slave.

int ByteCount Number of bytes transferred in each direction.

Return: If the operation was successful, the return value is true, otherwise it is

false.

Page 44 of 204

7 SPI Functions ELATEC

7.2.4 SPITransmit

Send a number of bytes to the slave. Received bits are refused.

bool SPITransmit(const byte *TXData,int ByteCount);

Parameters:

const byte *TXData Pointer to an array of bytes being transmitted to the slave.

int ByteCount Number of bytes transmitted.

Return: If the operation was successful, the return value is true, otherwise it is

false.

7.2.5 SPIReceive

Receive a number of bytes from the slave. Transmitted bits are set to zero.

bool SPIReceive(byte *RXData,int ByteCount) ;

Parameters:

byte *RXData Pointer to an array of bytes being received from the slave.

int ByteCount Number of bytes received.

Return: If the operation was successful, the return value is true, otherwise it is

false.

7.3 Examples

#include "twn4.sys.h"

void FuncSPIInitMaster(void)

{
const TSPIParameters Mode =
{
SPI_MODE_MASTER,
SPI_CPOL_LOW,
SPI_CPHA_EDGE1,
SPI_CLOCKRATE_15_MHZ,
SPI_FIRSTBIT_MSB
};
SPIInit (&Mode) ;
}
void FuncSPITransmitPacket (void)
{
SPIMasterBeginTransfer();
static const byte TXData[4] = { °A’,’B’,’C?,’D’ };
SPITransmit (TXData,4) ;
SPIMasterEndTransfer();
}
void FuncSPIReceivePacket (void)
{

SPIMasterBeginTransfer();
byte RXDatal[4];

Page 45 of 204

7 SPI Functions ELATEC

SPIReceive (RXData,4) ;
SPIMasterEndTransfer();

}

void FuncSPITransceivePacket (void)

{
SPIMasterBeginTransfer();
static const byte TXData[4] = { ’A’,’B’,’C’,’D’ };
byte RXDatal[4];
SPITransceive(TXData,RXData,4);
SPIMasterEndTransfer();

}

Page 46 of 204

8 RF Functions %EC

8 RF Functions

8.1 SearchTag

Use this function to search a transponder in the reading range of TWN4. TWN4 is searching for all types
of transponders, which have been specified via function SetTagTypes. If a transponder has been found,
tag type, length of ID and ID data itself are returned.

bool SearchTag(int *TagType,int *IDBitCount,byte *ID,int MaxIDBytes);

Parameters: None.

int *TagType Pointer to an integer, which receives the type of tag, which has been found.

int *IDBitCount Pointer to an integer, which receives the number of bits(!), the ID consists of.

byte *ID Pointer to an array of bytes, which contain ID data, if a transponder has been
found.

int MaxIDBytes A value, which specifies the buffer size of ID. No more than this specified

number of bytes will be copied to the location specified by ID.

Return: If a transponder has been found, the function returns true, otherwise it
returns false.

8.2 SetRFOff

Turn off RF field. If no further operations are required on a transponder found via function SearchTag you
may use this command to minimize power consumption of TWN4.

void SetRFOff (void);

Parameters: None.
Return: None.

8.3 SetTagTypes

Use this function to configure the transponders, which are searched by function SearchTag.

void SetTagTypes(unsigned int LFTagTypes,unsigned int HFTagTypes);

Parameters:

unsigned int LFTagTypes Specifies transponder types at the frequency 125.0 kHz - 134.2 kHz.
unsigned int HFTagTypes Specifies transponder types at the frequency 13.56 MHz.

Return: None.

Page 47 of 204

8 RF Functions

ELATEC
oy

8.3.1 Supported Types of LF Tags (125 kHz - 134.2 kHz)

Definition Frequency | Name Status

LFTAG_EM4102 LF EM4102 / CASI-RUSCO | Supported

LFTAG_HITAG1S LF HITAG 1/ HITAG S Supported

LFTAG_HITAG2 LF HITAG 2 Supported

LFTAG_EM4150 LF EM4x50 Supported

LFTAG_AT5555 LF AT5555/ AT5557/ Supported, delivers no ID
AT5577/ Q5

LFTAG_ISOFDX LF ISO FDX-B/ EM4105 Supported

LFTAG_EM4026 LF EM4026 On request

LFTAG_HITAGU LF HITAG u On request

LFTAG_EM4305 LF EM4305 On roadmap

LFTAG_HIDPROX LF HID Prox Supported with option P

LFTAG_TIRIS LF ISO HDX/ TIRIS Supported

LFTAG_COTAG LF Cotag Supported by option P

LFTAG_IOPROX LF ioProx Supported by option P

LFTAG_INDITAG LF Indala Supported by option P

LFTAG_HONEYTAG LF NexWatch Supported by option P

LFTAG_AWID LF AWID Supported

LFTAG_GPROX LF G-Prox Supported, read of hash value only

LFTAG_PYRAMID LF Pyramid Supported

LFTAG_KERI LF Keri Supported, read of raw data

LFTAG_DEISTER LF Deister Supported, read of raw data

Page 48 of 204

8 RF Functions %EC

8.3.2 Supported Types of HF Tags (13.56 MHz, Bluetooth)

Definition Frequency | Name Status

HFTAG_MIFARE HF ISO14443A/ MIFARE Supported

HFTAG_IS014443B HF 1ISO14443B Supported

HFTAG_IS015693 HF ISO15693/ Tag-it Supported

HFTAG_LEGIC HF LEGIC Supported by TWN4 LEGIC

HFTAG_HIDICLASS HF HID iCLASS Supported, read of UID, read of PAC
with option |

HFTAG_FELICA HF FeliCa Supported, read of UID only

HFTAG_SRX HF SRC Supported

HFTAG_NFCP2P HF NFC Peer-to-Peer Supported

HFTAG_BLE HF BLE (Bluetooth Low Energy) | Supported by TWN4 MultiTech 2 BLE

In order to search for more than one type of transponder, several types can be combined.
Note:

The use of the predefined macro TAGMASK is mandatory, even if only one type of tag is specified. Here is
an example which is searching for EM4102 and HITAG 1 at LF and for MIFARE at HF:

Example:

SetTagTypes (TAGMASK (LFTAG_EM4102) | TAGMASK(LFTAG_HITAG1S),
TAGMASK (HFTAG_MIFARE)) ;

8.4 GetTagTypes

This function returns the transponder types currently being searched for by function SearchTag separated
by frequency (LF and HF).

void GetTagTypes(unsigned int *LFTagTypes,unsigned int *HFTagTypes);

Parameters:

unsigned int *LFTagTypesPointer to a value, which receives the LF tag types.
unsigned int *HFTagTypesPointer to a value, which receives the HF tag types.
Return: None.

8.5 GetSupportedTagTypes

This function returns the transponder types, which are actually supported by the individual TWN4 sepa-
rated by frequency (LF and HF). Also the P-option is taken into account. This means, if the specific TWN4
has no option P, the appropriate transponders are not returned as supported type of transponder.

void GetSupportedTagTypes(unsigned int *LFTagTypes,
unsigned int *HFTagTypes);

Page 49 of 204

8 RF Functions %EC

Parameters:
unsigned int *LFTagTypesPointer to a value, which receives the LF tag types.

unsigned int *HFTagTypesPointer to a value, which receives the HF tag types.

Return: None.

Page 50 of 204

9 EM4x02-Specific Transponder Operations %EC

9 EMA4x02-Specific Transponder Operations

This chapter describes one function for accessing EM4x02 transponders. EM4x02 is a broadly known
type of transponder, which is known under several names, such as EM4002, EM4102, Unique and several
other brands.

9.1 Function

9.1.1 EM4102_GetTaglnfo

Get detailed information regarding transponder type LFTAG_EM4102 being found by function SearchTag.
int EM4102_GetTagInfo(void)

Parameters: None.

Return: One of the following pre-defined values: EM4102_BITRATE_UNKNOWN or
EM4102_BITRATE_F64 or EM4102_BITRATE_F32.

Page 51 of 204

10 HITAG 1- and HITAG S-Specific Transponder Operations

ELATEC
oy

10 HITAG 1- and HITAG S-Specific Transponder

Operations

This chapter describes functions for accessing HITAG 1 and HITAG S transponders. HITAG 1 and HITAG
S are very similar. Therefore, same set of functions can be used for both types.

HITAG 1 and HITAG S transponder are available with different memory sizes. Due to this, the maximum
address, which can be specified depends also on the specific type of transponder:

Type Memory Memory Valid Address
Size (Bits) | Size (Bytes) Range
HITAG 1 2048 256 0-63
HITAG S 2048 256 0-63
2048
HITAG S 256 32 0-7
256

10.1 Read/Write Data

10.1.1 Hitag1S_ReadPage

Read one page (4 bytes) from the transponder.

bool HitaglS_ReadPage(int PageAddress,byte *Page);

Parameters:

int PageAddress

Specifies the address of the page to be read.

byte *Page Pointer to an array of 4 bytes where page data is stored after a successful
operation.

Return: If the operation was successful, the return value is true, otherwise it is
false.

10.1.2 Hitag1S_WritePage

Write one page (4 bytes) to the transponder.

bool HitaglS_WritePage(int PageAddress,const byte *Page);

Page 52 of 204

10 HITAG 1- and HITAG S-Specific Transponder Operations %EC

Parameters:

int PageAddress Specifies the address of the page to be written.

byte *Page Pointer to an array of 4 bytes which are written to the transponder.

Return: If the operation was successful, the return value is true, otherwise it is

false.

10.1.3 Hitag1S_ReadBlock

Read 1 to 4 consecutive pages (4 to 16 bytes) from the transponder. The number of pages depends on the
specified address: The read process is stopped as soon as the read address reaches a block boundary,
which is a multiple of 4. If BlockAddress already specifies a block boundary, the maximum of 4 pages will
be read.

bool HitaglS_ReadBlock(int BlockAddress,
byte *Block,int *BytesRead);

Parameters:

int BlockAddress Specifies the first page address of the block to be read.

byte *Page Pointer to an array of 4 to 16 bytes which are read from the transponder.
int *BytesRead Pointer to an integer, which receives the number of actually read bytes.
Return: If the operation was successful, the return value is true, otherwise it is

false.

10.1.4 Hitag1S_WriteBlock

Write 1 to 4 consecutive pages (4 to 16 bytes) to the transponder. The number of pages depends on the
specified address: The write process is stopped as soon as the write address reaches a block boundary,
which is a multiple of 4. If BlockAddress already specifies a block boundary, the maximum of 4 pages will
be written.

bool HitaglS_WriteBlock(int BlockAddress,const byte *Block,
int *BytesWritten);

Parameters:

int BlockAddress Specifies the first page address of the block to be written.

byte *Page Pointer to an array of 4 to 16 bytes which are written to the transponder.
int *BytesWritten Pointer to an integer, which receives the number of actually written bytes.
Return: If the operation was successful, the return value is true, otherwise it is

false.

10.2 Hitag1S_Halt

This functions will halt a currently selected transponder. The transponder will not participate in any further
transponder communication till the RF field is turned off and on again.

bool HitaglS_Halt(void);

Page 53 of 204

10 HITAG 1- and HITAG S-Specific Transponder Operations EC

Parameters: None.
Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 54 of 204

11 HITAG 2-Specific Transponder Operations %EC

11 HITAG 2-Specific Transponder Operations

This chapter describes functions for accessing HITAG 2 transponders.

HITAG 2 is a transponder with a memory size of 256 bits, thus 32 bytes. It stores data organized in pages,
where one page is 4 bytes. There are 8 pages, which can be accessed with addresses in the range from
Oto7.

HITAG 2 can be operated in two modes: Password mode and crypto mode.
Note:
TWN4 supports password mode of HITAG 2 only.

11.1 Read/Write Data

11.1.1 Hitag2_ReadPage

Read one page (4 bytes) from the transponder.

bool Hitag2_ReadPage(int PageAddress,byte *Page);

Parameters:

byte PageAddress Specifies the address of the page to be read.

byte *Page Pointer to an array of 4 bytes where page data is stored after a successful
operation.

Return: If the operation was successful, the return value is true, otherwise it is
false.

11.1.2 Hitag2_WritePage

Write one page (4 bytes) to the transponder.
bool Hitag2 WritePage(byte PageAddress,const byte *Page);

Parameters:

byte PageAddress Specifies the address of the page to be written.

byte *Page Pointer to an array of 4 bytes which are written to the transponder.

Return: If the operation was successful, the return value is true, otherwise it is

false.

Page 55 of 204

11 HITAG 2-Specific Transponder Operations %EC

11.1.3 Hitag2_SetPassword

During search for HITAG 2, TWN4 is using a password for doing a login to the transponder. The default
password after a reset is 0x4D, 0x49,0x4B, 0x52. This is the well-known default password for HITAG 2.

void Hitag2_SetPassword(const byte *Password) ;

Parameters:
const byte *Password Pointer to an array of 4 bytes, which contains the new password.

Return: None.

11.2 Hitag2_Halt

This functions will halt a currently selected transponder. The transponder will not participate in any further
transponder communication till the RF field is turned off and on again.

bool Hitag2 Halt(void);

Parameters: None.
Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 56 of 204

12 EMA4x50-Specific Transponder Operations %EC

12 EM4x50-Specific Transponder Operations

This chapter describes functions for accessing EM4x50 transponders. There are several chips, which are
compatible to each other within this family. These are: EM4050, EM4150, EM4450, EM4550. According
to the datasheet of the EM4x50 transponder, one word is meant to be 4 bytes.

12.1 Functions

Perform a login operation to the transponder.

12.1.1 EM4150_Login

bool EM4150_Login(const byte *Password)

Parameters:
const byte *Password Pointer to an array of 4 bytes which contains the password.

Return: If the operation was successful, the return value is true, otherwise it is
false.

12.1.2 EM4150_ReadWord

Read one word (4 bytes) from the transponder.
bool EM4150_ReadWord(int Address,byte *Word)

Parameters:

int Address Specifies the address of the page to be read. The valid address range is
from 0 to 33.

byte *Word Pointer to an array of 4 bytes which contains data read from the transponder.

Return: If the operation was successful, the return value is true, otherwise it is
false.

12.1.3 EM4150 WriteWord

Write one word (4 bytes) to the transponder.

bool EM4150_WriteWord(int Address,const byte *Word)

Page 57 of 204

12 EMA4x50-Specific Transponder Operations

ELATEC
oy

Parameters:
int Address

const byte *WordData

Return:

Specifies the address of the page to be written.

Pointer to an array of 4 bytes which contains data to be written to the
transponder.

If the operation was successful, the return value is true, otherwise it is
false.

12.1.4 EM4150_WritePassword

Change the password stored on a transponder.

bool EM4150_WritePassword(const byte *ActualPassword,const byte *NewPassword)

Parameters:

const byte
*ActualPassword

const byte
*NewPassword

Return:

Pointer to an array of 4 bytes which specifies the current password of the
transponder.

Pointer to an array of 4 bytes which specifies the password to be written to
the transponder.

If the operation was successful, the return value is true, otherwise it is
false.

12.1.5 EM4150_GetTaginfo

Get detailed information regarding transponder type LFTAG_EM4150 being found by function SearchTag.

int EM4150_GetTagInfo(void)

Parameters:

Return:

None.

One of the following pre-defined values: EM4150_BITRATE_UNKNOWN or
EM4150_BITRATE_F64 or EM4150_BITRATE_F40.

Page 58 of 204

13 AT55xx-Specific Transponder Operations %EC

13 AT55xx-Specific Transponder Operations

This chapter describes functions for accessing AT55xx transponders. There are several chips, which are
compatible to each other within this family. These are: 5550, €5551, T5555, T5555B, T5556, T5557,
ATA5567, ATAS577. Note: T5552 and T5558 are not supported by this API.

13.1 Control Functions

13.1.1 AT55_Begin

The function AT55_Begin must be used before subsequent read or write access to the transponder in
question.

void AT55_Begin(void) ;

Parameters: None.
Return: None.
Background:

Normally, in order to begin any read/write access to a transponder, the TWN4 system provides the function
SearchTag. This function searches for a transponder and keeps the RF in appropriate condition to allow
subsequent read- and write access.

This sequence is not applicable for the AT55xx family of transponders for two reasons:
» The transponder does not contain a serial number
» The transponder does not send data in a well-known standard format

The way out of this situation is the function AT55_Begin, which does not return any transponder data but
turns on RF field for subsequent read-/write operations.

13.2 Read Data

Requirements:

The firmware of TWN4 supports read of data only, if the modulation of the transponder is configured to
manchester coding with a bitrate of RF/128 up to RF/8.

Furthermore, TWN4 can be set up to support sequence terminator turned on or off.

The default setup is RF/64 with sequence terminator turned off. In order to choose a different configuration
the function SetParameters must be used. Here is an example of how use of RF/32 is programmed:

const byte MyRF32Config[] = { AT55_BITRATE, 1, 32, TLV_END };
SetParameters (MyRF32Config,sizeof (MyRF32Config)) ;

Page 59 of 204

13 AT55xx-Specific Transponder Operations %EC

Example of how to turn on sequence terminator on and use RF/40:
const byte MyRF40Config[] =

{
AT55_0PTIONS, 1, AT55_0PT_SEQUENCETERMINATOR_ON,
AT55_BITRATE, 1, 40,
TLV_END

};

SetParameters (MyRF40Config,sizeof (MyRF40Config)) ;

13.2.1 AT55 ReadBlock

Read one block (4 bytes) from the transponder.
bool AT55_ReadBlock(int Address,byte *Data);

Parameters:

int Address Specifies the address of the page to be read.

byte *Data Pointer to an array of 4 bytes which contains data read from the transponder.
Return: If the operation was successful, the return value is true, otherwise it is

false.

13.2.2 AT55_ReadBlockProtected

Read one block (4 bytes) from a password-protected transponder.
bool AT55_ReadBlockProtected(int Address,byte *Data,const byte *Password);

Parameters:
int Address Specifies the address of the page to be read.
byte *Data Pointer to an array of 4 bytes which contains data read from the transponder.

const byte *Password Pointer to an array of 4 bytes which contains the password.

Return: If the operation was successful, the return value is true, otherwise it is
false.

13.3 Write Data

13.3.1 AT55_ WriteBlock

Write one block (4 bytes) to the transponder.
bool AT55_WriteBlock(int Address,const byte *Data) ;

Parameters:

int Address Specifies the address of the page to be written.

const byte *Data Pointer to an array of 4 bytes which contains data to be written to the
transponder.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 60 of 204

13 AT55xx-Specific Transponder Operations %EC

13.3.2 AT55_WriteBlockProtected

Write one block (4 bytes) to a password-protected transponder.

bool AT55_WriteBlockProtected(int Address,const byte *Data,const byte *Password);

Parameters:
int Address Specifies the address of the page to be written.
const byte *Data Pointer to an array of 4 bytes which contains data to be written to the

transponder.
const byte *Password Pointer to an array of 4 bytes which contains the password.

Return: If the operation was successful, the return value is true, otherwise it is
false.

13.3.3 AT55_ WriteBlockAndLock

Write one block (4 bytes) to a transponder and lock the written data. Locking data means, that it is not
possible to modify data contained in this block.

bool AT55_WriteBlockAndLock(int Address,const byte *Data);

Parameters:

int Address Specifies the address of the page to be written.

const byte *Data Pointer to an array of 4 bytes which contains data to be written to the
transponder.

Return: If the operation was successful, the return value is true, otherwise it is
false.

13.3.4 AT55_ WriteBlockProtectedAndLock

Write one block (4 bytes) to a password-protected transponder and lock the written data. Locking data
means, that it is not possible to modify data contained in this block.

bool AT55_WriteBlockProtectedAndLock(int Address,const byte *Data,const byte *Password) ;

Parameters:
int Address Specifies the address of the page to be written.
const byte *Data Pointer to an array of 4 bytes which contains data to be written to the

transponder.
const byte *Password Pointer to an array of 4 bytes which contains the password.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 61 of 204

14 TILF (TIRIS) Functions ELATEC

14 TILF (TIRIS) Functions

This chapter describes functions for accessing Texas Instruments Low Frequency transponders (TILF).
This type of transponder was formerly also known as TIRIS.

Note:

It is highly recommended to also study datasheets of according transponders. Datasheets are available
from Texas Instruments.

14.1 Search Function

14.1.1 TILF_SearchTag

Search for a TILF tag. This function can be used directly instead of the general search function SearchTag.
The function doing a search for a TILF tag in two different ways: First, a tag is search via a call of func-
tion TILF_ChargeOnlyRead. Second, a tag is searched via function TILF_MUGeneralReadPage, address
3.

bool TILF_SearchTag(int *IDBitCount,byte *ID,int MaxIDBytes);

Parameters:

int *IDBitCount A pointer to an integer, which receives the number of actually read
bits(!). Due to the nature of the functions TILF_ChargeOnlyRead and
TILF_MUGeneralReadPage, the number of received bits is either 32 or 64.

byte *ID A pointer to an array of bytes, which receives the read ID. Due to the nature
of the functions TILF_ChargeOnlyRead and TILF_MUGeneralReadPage, the
number of received bytes is either 4 or 8.

int MaxIDBytes The maximum number of bytes, which will be copied to ID

Return: If the operation was successful, the return value is true, otherwise it is

false.

14.2 Single-Page Read/Write Function

14.2.1 TILF_ChargeOnlyRead

Search for a single page transponder. This might be a read-only or a read/write transponder. Only
transponders are detected, where ID is stored under use of a CCITT CRC. If a transponder is pro-
grammed in a different way, consider using TILF_ChargeOnlyReadLo, which allows to read entire content
of transponder W/O CRC check.

bool TILF_ChargeOnlyRead(byte *ReadData);

Page 62 of 204

14 TILF (TIRIS) Functions ELATEC

Parameters:
byte *ReadData A pointer to an array of 8 bytes, which receives checked ID data.
Return: If the operation was successful, the return value is true, otherwise it is

false.

14.2.2 TILF_ChargeOnlyReadLo

Search for a single page transponder. This might be a read-only or a read/write transponder. No CRC
check is performed, thus allowing to read also custom programmed tags. The interpretation of data should
be known by the solution builder.

bool TILF_ChargeOnlyReadLo(byte *ReadData);

Parameters:
byte *ReadData A pointer to an array of 16 bytes, which receives unchecked ID data.
Return: If the operation was successful, the return value is true, otherwise it is

false.

14.2.3 TILF_SPProgramPage

Write data to a single-page read/write transponder by using CCITT CRC.

bool TILF_SPProgramPage(const byte *WriteData,byte *ReadData);

Parameters:

const byte A pointer to an array of 8 bytes, which will be written to the transponder.

*WriteData

byte *ReadData A pointer to an array of 8 bytes, which receives checked response from the
transponder.

Return: If the operation was successful, the return value is true, otherwise it is
false.

14.2.4 TILF_SPProgramPagelLo

Write data to a single-page read/write transponder.

bool TILF_SPProgramPageLlo(const byte *WriteData,byte *ReadData);

Parameters:

const byte A pointer to an array of 10 bytes, which will be written to the transponder.

*WriteData

byte *ReadData A pointer to an array of 16 bytes, which receives unchecked response from
the transponder.

Return: If the operation was successful, the return value is true, otherwise it is

false.

Page 63 of 204

14 TILF (TIRIS) Functions ELATEC

14.3 Multi-Page Read/Write Function

14.3.1 TILF_MPGeneralReadPage

General read of data from a multi-page transponder (MPT).

bool TILF_MPGeneralReadPage(int Address,byte *ReadData);

Parameters:

int Address The page address, where data will be read from.

byte *ReadData A pointer to an array of 8 bytes, which receives data.

Return: If the operation was successful, the return value is true, otherwise it is

false.

14.3.2 TILF_MPSelectiveReadPage

Selective read of data from a multi-page transponder (SAMPT or SAMPTS).

bool TILF_MPSelectiveReadPage(
int Address,const byte *SelectiveAddress,byte *ReadData);

Parameters:

int Address The page address, where data will be read from.

const byte Pointer to an array of 3 bytes (24 bits) which provides the selective address.
*SelectiveAddress

byte *ReadData A pointer to an array of 8 bytes, which receives data.

Return: If the operation was successful, the return value is true, otherwise it is

false.

14.3.3 TILF_MPProgramPage

Program one page to a multi-page transponder (MPT).

bool TILF_MPProgramPage (
int Address,const byte *WriteData,byte *ReadData);

Parameters:

int Address The page address, where data will be programmed to.

const byte A pointer to an array of 8 bytes, which will be programmed.

*WriteData

byte *ReadData A pointer to an array of 8 bytes, which receives data.

Return: If the operation was successful, the return value is true, otherwise it is

false.

14.3.4 TILF_MPSelectiveProgramPage

Selective program of one page to a multi-page transponder (SAMPT or SAMPTS).

Page 64 of 204

14 TILF (TIRIS) Functions ELATEC

bool TILF_MPSelectiveProgramPage (
int Address,const byte *SelectiveAddress,
const byte *WriteData,byte *ReadData);

Parameters:

int Address The page address, where data will be programmed to.

const byte Pointer to an array of 3 bytes (24 bits) which provides the selective address.
*SelectiveAddress

const byte A pointer to an array of 8 bytes, which will be programmed.

*WriteData

byte *ReadData A pointer to an array of 8 bytes, which receives data.

Return: If the operation was successful, the return value is true, otherwise it is

false.

14.3.5 TILF_MPLockPage

Lock one page on a multi-page transponder (MPT).
bool TILF_MPLockPage(int Address,byte *ReadData);

Parameters:

int Address The page address, which will be locked.

byte *ReadData A pointer to an array of 8 bytes, which receives data.

Return: If the operation was successful, the return value is true, otherwise it is

false.

14.3.6 TILF_MPSelectiveLockPage

Selective lock one page on a multi-page transponder (SAMPT or SAMPTS).

bool TILF_MPSelectiveLockPage(
int Address,const byte *SelectiveAddress,byte *ReadData);

Parameters:

int Address The page address, which will be locked.

const byte Pointer to an array of 3 bytes (24 bits) which provides the selective address.
*SelectiveAddress

byte *ReadData A pointer to an array of 8 bytes, which receives data.

Return: If the operation was successful, the return value is true, otherwise it is

false.

14.3.7 TILF_MPGeneralReadPagelLo

General read of data from a multi-page transponder (MPT) W/O CRC-check.
bool TILF_MPGeneralReadPageLo(int Address,byte *ReadData);

Page 65 of 204

14 TILF (TIRIS) Functions ELATEC

Parameters:

int Address The page address, where data will be read from.

byte *ReadData A pointer to an array of 16 bytes, which receives data.

Return: If the operation was successful, the return value is true, otherwise it is

false.

14.3.8 TILF_MPSelectiveReadPagelLo

Selective read of data from a multi-page transponder (SAMPT or SAMPTS) W/O CRC-check.

bool TILF_MPSelectiveReadPageLo (
int Address,const byte *SelectiveAddress,byte *ReadData);

Parameters:

int Address The page address, where data will be read from.

const byte Pointer to an array of 3 bytes (24 bits) which provides the selective address.
*SelectiveAddress

byte *ReadData A pointer to an array of 16 bytes, which receives data.

Return: If the operation was successful, the return value is true, otherwise it is

false.

14.3.9 TILF_MPProgramPagelLo

Program one page to a multi-page transponder (MPT) W/O CRC-check.

bool TILF_MPProgramPageLo(
int Address,const byte *WriteData,byte *ReadData);

Parameters:

int Address The page address, where data will be programmed to.

const byte A pointer to an array of 10 bytes, which will be programmed.

*WriteData

byte *ReadData A pointer to an array of 16 bytes, which receives data.

Return: If the operation was successful, the return value is true, otherwise it is

false.

14.3.10 TILF_MPSelectiveProgramPageLo

Selective program of one page to a multi-page transponder (SAMPT or SAMPTS) W/O CRC-check.

bool TILF_MPSelectiveProgramPageLo(
int Address,const byte *SelectiveAddress,
const byte *WriteData,byte *ReadData) ;

Page 66 of 204

14 TILF (TIRIS) Functions

ELATEC
oy

Parameters:
int Address

const byte
*SelectiveAddress

const byte
*WriteData

byte *ReadData
Return:

The page address, where data will be programmed to.

Pointer to an array of 3 bytes (24 bits) which provides the selective address.
A pointer to an array of 10 bytes, which will be programmed.
A pointer to an array of 16 bytes, which receives data.

If the operation was successful, the return value is true, otherwise it is
false.

14.3.11 TILF_MPLockPageLo

Lock one page on a multi-page transponder (MPT) W/O CRC-check.

bool TILF_MPLockPageLo(int Address,byte *ReadData);

Parameters:

int Address
byte *ReadData
Return:

The page address, which will be locked.
A pointer to an array of 16 bytes, which receives data.

If the operation was successful, the return value is true, otherwise it is
false.

14.3.12 TILF_MPSelectiveLockPageLo

Selective lock one page on a multi-page transponder (SAMPT or SAMPTS) W/O CRC-check.

bool TILF_MPSelectiveLockPageLo (
int Address,const byte *SelectiveAddress,byte *ReadData);

Parameters:
int Address

const byte
*SelectiveAddress

byte *ReadData

Return:

The page address, which will be locked.

Pointer to an array of 3 bytes (24 bits) which provides the selective address.

A pointer to an array of 16 bytes, which receives data.

If the operation was successful, the return value is true, otherwise it is
false.

14.4 Multi-Usage Read/Write Function

14.4.1 TILF_MUGeneralReadPage

General read of one page from a multi-usage transponder (MUSA).

bool TILF_MUGeneralReadPage(int Address,byte *ReadData);

Page 67 of 204

14 TILF (TIRIS) Functions

ELATEC
oy

Parameters:
int Address
byte *ReadData

Return:

The page address, where data will be read from.
A pointer to an array of 7 bytes, which receives page data.

If the operation was successful, the return value is true, otherwise it is
false.

14.4.2 TILF_MUSelectiveReadPage

Selective read of one page from a multi-usage transponder (MUSA).

bool TILF_MUSelectiveReadPage(
int Address,int SelectiveAddress,byte *ReadData);

Parameters:

int Address

int SelectiveAddress
byte *ReadData
Return:

The page address, where data will be read from.
A value which specifies the 8-bit selective address.
A pointer to an array of 7 bytes, which receives page data.

If the operation was successful, the return value is true, otherwise it is
false.

14.4.3 TILF_MUSpecialReadPage

Special read of one page from a multi-usage transponder (MUSA).

bool TILF_MUSpecialReadPage(
int Address,const byte *SpecialAddressl,
const byte *SpecialAddress2,byte *ReadData);

Parameters:
int Address

const byte
*SpecialAddressl

const byte
*SpecialAddress2

byte *ReadData

Return:

The page address, where data will be read from.
Pointer to an array of 5 bytes (40 bits) which provides the special address 1.

Pointer to an array of 3 bytes (24 bits) which provides the special address 2.
A pointer to an array of 7 bytes, which receives page data.

If the operation was successful, the return value is true, otherwise it is
false.

14.4.4 TILF_MUProgramPage

Program one page to a multi-usage transponder (MUSA).

bool TILF_MUProgramPage(int Address,const byte *WriteData,byte *ReadData);

Page 68 of 204

14 TILF (TIRIS) Functions

ELATEC
oy

Parameters:
int Address

const byte
*WriteData

byte *ReadData
Return:

The page address, where data will be programmed to.

A pointer to an array of 5 bytes, which will be programmed.

A pointer to an array of 7 bytes, which receives page data.

If the operation was successful, the return value is true, otherwise it is
false.

14.4.5 TILF_MUSelectiveProgramPage

Selective program of one page to a multi-usage transponder (MUSA).

bool TILF_MUSelectiveProgramPage (
int Address,int SelectiveAddress,
const byte *WriteData,byte *ReadData);

Parameters:
int Address
int SelectiveAddress

const byte
*WriteData

byte *ReadData

Return:

The page address, where data will be programmed to.
A value which specifies the 8-bit selective address.
A pointer to an array of 5 bytes, which will be programmed.

A pointer to an array of 7 bytes, which receives page data.

If the operation was successful, the return value is true, otherwise it is
false.

14.4.6 TILF_MUSpecialProgramPage

Special program of one page to a multi-usage transponder (MUSA).

bool TILF_MUSpecialProgramPage (
int Address,const byte *SpecialAddressl,
const byte *SpecialAddress2,const byte *WriteData,
byte *ReadData);

Parameters:
int Address

const byte
*SpecialAddressl

const byte
*3pecialAddress2

const byte
*WriteData

byte *ReadData

Return:

The page address, where data will be programmed to.
Pointer to an array of 5 bytes (40 bits) which provides the special address 1.

Pointer to an array of 3 bytes (24 bits) which provides the special address 2.
A pointer to an array of 5 bytes, which will be programmed.
A pointer to an array of 7 bytes, which receives page data.

If the operation was successful, the return value is true, otherwise it is
false.

Page 69 of 204

14 TILF (TIRIS) Functions ELATEC

14.4.7 TILF_MULockPage

Lock one page of a multi-usage transponder (MUSA).
bool TILF_MULockPage(int Address,byte *ReadData);

Parameters:

int Address The page address, which will be locked.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, otherwise it is

false.

14.4.8 TILF_MUSelectiveLockPage

Selective lock of one page of a multi-usage transponder (MUSA).

bool TILF_MUSelectiveLockPage(
int Address,int SelectiveAddress,byte *ReadData);

Parameters:

int Address The page address, which will be locked.

int SelectiveAddress A value which specifies the 8-bit selective address.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

14.4.9 TILF_MUSpecialLockPage

Special lock of one page of a multi-usage transponder (MUSA).

bool TILF_MUSpecialLockPage(
int Address,const byte *SpecialAddressl,
const byte *SpecialAddress2,byte *ReadData);

Parameters:

int Address The page address, which will be locked.

const byte Pointer to an array of 5 bytes (40 bits) which provides the special address 1.
*SpecialAddressl

const byte Pointer to an array of 3 bytes (24 bits) which provides the special address 2.
*SpecialAddress2

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, otherwise it is

false.

Page 70 of 204

15 1S014443 Transponder Operations %EC

15 1SO14443 Transponder Operations

This chapter handles specific operations for transparent access of 1ISO14443A/B compliant transpon-
ders. Before these functions can be used, the transponder must have been selected using the function
SearchTag(...).

15.1 ISO14443A

15.1.1 Get ATQA

This function delivers the ATQA (Answer To Request TypeA) of the last detected ISO14443A compliant
transponder.

bool IS014443A_GetATQA(bytex ATQA) ;

Parameters:

bytex ATQA After successful completion of this function, the buffer referred by this pa-
rameter holds the ATQA of the transponder. The function returns two bytes
of data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

15.1.2 Get SAK

This function delivers the SAK (Select Acknowledge) of the last detected ISO14443A compliant transpon-
der.

bool IS014443A_GetSAK(byte* SAK);

Parameters:

byte* SAK After successful completion of this function, the buffer referred by this pa-
rameter holds the SAK of the transponder. The function returns one byte of
data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

15.1.3 Get ATS

This function delivers the ATS (Answer To Select) of a ISO14443A layer 4 transponder.

Page 71 of 204

15 1S014443 Transponder Operations %EC

bool IS014443A_GetATS
(
bytex ATS,
int* ATSByteCnt,
int MaxATSByteCnt
)3

Parameters:

byte* ATS After successful completion of this function, the buffer referred by this pa-
rameter holds the ATS which was read from the transponder. Take care for
adequate dimensioning.

int* ATSByteCnt After successful completion of this function, this parameter holds the number
of bytes, the ATS contains.

int MaxATSByteCnt This parameter holds the array-size of ATS in bytes.

Return: If the operation was successful, the return value is true, otherwise it is

false.

15.2 1SO14443B

15.2.1 Get ATQB

This function delivers the ATQB (Answer To Request TypeB) of the last detected ISO14443B compliant

transponder.
Note: This function cannot be called on TWN4 MultiTech Legic.

bool IS014443B_GetATQB(bytex ATQB, int* ATQBByteCnt, int MaxATQBByteCnt);

Parameters:

byte* ATQB After successful completion of this function, the buffer referred by this pa-
rameter holds the ATQB of the transponder. Take care for adequate dimen-
sioning, the ATQB usually has 12 or 13 bytes in length.

int* ATQBByteCnt After successful completion of this function, this parameter holds the number
of bytes of ATQB.

int MaxATQBByteCnt This parameter holds the array-size of ATQB in bytes.

Return: If the operation was successful, the return value is true, otherwise it is

false.

15.2.2 Get Answer to ATTRIB

This function delivers the transponder’'s answer to the ATTRIB command, which is sent automatically
during selection process by the reader.
Note: This function cannot be called on TWN4 MultiTech Legic.

bool IS014443B_GetAnswerToATTRIB
(
byte* AnswerToATTRIB,
int* AnswerToATTRIBByteCnt,
int MaxAnswerToATTRIBByteCnt
)

Page 72 of 204

15 1S014443 Transponder Operations %EC

Parameters:

byte* AnswerToATTRIB After successful completion of this function, the buffer referred by this pa-
rameter holds the AnswerToATTRIB of the transponder. Take care for ade-
quate dimensioning, AnswerToATTRIB can have one or more bytes in length.

intx After successful completion of this function, this parameter holds the number

AnswerToATTRIBByteCnt Of bytes of AnswerToATTRIB.

int This parameter holds the array-size of AnswerToATTRIB in bytes.

MaxAnswerToATTRIBByteCnt

Return: If the operation was successful, the return value is true, otherwise it is
false.

15.3 Check Presence

This function can be used to probe if a ISO14443-4 transponder is still in reading range. The internal state
of the transponder remains unchanged.
Note: This function cannot be called on TWN4 MultiTech Legic.

bool IS014443_4_CheckPresence(void);

Parameters: None.
Return: If the transponder is still in range, the return value is true, otherwise it is
false.

15.4 1SO14443-3 Transparent Data Exchange

This function can be used for transparent exchange of data between reader and 1SO14443-3 transpon-
ders. The function does not calculate any CRC or other overhead by itself, so if necessary this has to be
conducted on host side.

bool IS014443_3_TDX
(
byte* TXRX,
int TXByteCnt,
int* RXByteCnt,
int MaxRXByteCnt
);

Page 73 of 204

15 1S014443 Transponder Operations %EC

Parameters:

byte* TXRX This buffer holds the byte-string that shall be transmitted to the transponder.
The response of the transponder is also returned by this parameter. Take
care for adequate dimensioning.

int TXByteCnt This parameter holds the number of bytes that shall be transmitted to the
transponder.

int* RXByteCnt After successful completion of this function, this parameter holds the number
of bytes that the transponder response contains.

int MaxRXByteCnt This parameter holds the array-size of TXRX in bytes.

Return: If the operation was successful, the return value is true, otherwise it is

false.

15.5 1SO14443-4 Transparent Data Exchange

This function can be used for transparent exchange of data between reader and 1SO14443-4 transpon-
ders. All framing of layer 4 subset is already done by the reader, so only the payload needs to be passed
to the function.

bool IS014443_4_TDX
(
bytex TXRX,
int TXByteCnt,
int* RXByteCnt,
int MaxRXByteCnt
)3

Parameters:

byte* TXRX This buffer holds the byte-string that shall be transmitted to the transponder.
The response of the transponder is also returned by this parameter. Take
care for adequate dimensioning.

int TXByteCnt This parameter holds the number of bytes that shall be transmitted to the
transponder.

int* RXByteCnt After successful completion of this function, this parameter holds the number
of bytes that the transponder response contains.

int MaxRXByteCnt This parameter holds the array-size of TXRX in bytes.

Return: If the operation was successful, the return value is true, otherwise it is

false.

15.6 Multiple Tag Handling

TWN4 is capable of handling multiple ISO14443A tags that are simultaneously present in the RF field.
Use the following functions to inventorize the field and select one of the discovered transponders for sub-
sequent operations.

Page 74 of 204

15 1S014443 Transponder Operations

ELATEC
oy

15.6.1 Search for Transponders

Use this function to search the RF field for ISO14443A transponders. The result is a list of the UID of the

respective transponders.

bool IS014443A_SearchMultiTag

(
int* UIDCnt,

int* UIDListByteCnt,

bytex UIDList,

int MaxUIDListByteCnt

)

Parameters:
int* UIDCnt
int* UIDListByteCnt

byte* UIDList

int MaxUIDListByteCnt

Return:

This parameter holds the number of found transponder UIDs.
This parameter holds the number of valid bytes of the UID list.

This parameter holds the list of found UIDs. Every entry is preceeded
by a single byte representing the respective UID length, e.g. the two
transponder IDs 11223344 and 00010203040506 would be coded as fol-
lows: 0411223340700010203040506.

This parameter holds the array-size of UIDList in bytes.

If the operation was successful, the return value is true, otherwise it is
false.

15.6.2 Select Transponder

Use this function to select one of the discovered transponders for further operations.

bool IS014443A_SelectTag(const byte*x UID, int UIDByteCnt);

Parameters:
const bytex UID
int UIDByteCnt

Return:

Specify the UID of the transponder to be selected.
This parameter holds the byte count of the specified UID.

If the operation was successful, the return value is true, otherwise it is
false.

Page 75 of 204

16 MIFARE Classic Specific Transponder Operations

ELATEC

16 MIFARE Classic Specific Transponder

Operations

Sector O

Sector 1

Sector 2

Sector 3

Sector 4

Sector 5

Sector 6

Sector 7

Sector 8

Sector 9

Sector 10

Sector 11

Sector 12

Sector 13

Sector 14

Sector 15

10

11

12

13

14 | 15

Block O

Block 1

Block 2

Block 3

Key A

Access Rights

Key B

Figure 16.1: Memory layout of a MIFARE Classic 1K transponder

Page 76 of 204

16 MIFARE Classic Specific Transponder Operations %EC

The memory of MIFARE Classic transponders is organized in sectors and blocks. In case of MIFARE
Classic 1K, the memory is divided into 16 sectors, each sector holds 4 blocks. Each block holds 16 bytes
of data. Each sector is secured by two keys, Key A and Key B which are always located in the last block of
a sector (sector trailer). In order to access the respective sector, a login using one of the two keys has to be
performed. Once logged in, the data blocks are accessible for read-, write- or value-operations. Each key
may be equipped with certain access rights, the access rights are coded in byte 6, 7 and 8 of the sector
trailer. Byte 9 is available for data storage.

In case of MIFARE Classic 4K, the memory layout of sector addresses 0 to 31 is compatible to the 1K
version, from sector 32 to 39, each sector holds 16 data blocks.

In any case, block 0 of sector 0 is called manufacturer block, and cannot be overwritten. Within this block,
the UID is stored and some manufacturer specific data.

16.1 Login

In order to do any operation on a sector of a MIFARE Classic transponder, a login to the respective sector
has to be performed. Each sector holds two keys, Key A and Key B. Depending on the access conditions
of the sector, the appropriate key shall be used for the desired operation. Both the keys and the access
conditions are stored in the sector trailer.

bool MifareClassic_Login
(
const bytex Key,
byte KeyType,
int Sector

)

Parameters:

const byte* Key Pointer to an array of bytes, which has to contain six bytes. These bytes
represent the key for the login process.

byte KeyType Specifies, with which key the operation has to be performed. This is one of
the defined constants KEYA or KEYB.

int Sector Specifies the sector for the login.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Key (hex) Description

FF FF FF FF FF FF Default Transport Key A/B (NXP)

A0 A1 A2 A3 A4 A5 Default Transport Key A (Infineon)

BO B1 B2 B3 B4 B5 Default Transport Key B (Infineon)

D3 F7 D3 F7 D3 F7 Default key for NDEF-formatted tags

Table 16.1: Well-known keys for MIFARE Classic transponders

Page 77 of 204

16 MIFARE Classic Specific Transponder Operations %EC

16.2 Read/Write Data

16.2.1 Read Data Block

Read 16 bytes of data from a data-block of the transponder. Please note: If a sector trailer is read, the
respective key which was used for login is represented by zeros.

bool MifareClassic_ReadBlock
(

int Block,
bytex Data
)
Parameters:
int Block Specify the address of the block to be read. The valid range of this parame-
ter is between 0 and 255.
byte* Data This parameter holds the data which was read from the tag if the operation
was successful. Note that this function always reads 16 bytes of data, so the
minimum array size of Data must be at least 16 bytes.
Return: If the operation was successful, the return value is true, otherwise it is

false.

16.2.2 Write Data Block

Write 16 bytes of data to a data-block of the transponder. Special care must be taken when writing to a
sector trailer as a faulty setting of the access conditions can make the sector unaccessible.

bool MifareClassic_WriteBlock

(
int Block,
const bytex Data

)

Parameters:

int Block Specify the address of the block to be written. The valid range of this pa-
rameter is between 0 and 255.

const byte* Data This parameter holds the data which shall be written to the tag. Note that
this function always writes 16 bytes of data, so the minimum array size of
Data shall be at least 16 bytes.

Return: If the operation was successful, the return value is true, otherwise it is

false.

Page 78 of 204

16 MIFARE Classic Specific Transponder Operations %EC

16.3 Handling of Value Blocks

16.3.1 Read Value Block

Read the value stored in a MIFARE Classic compliant value block.

bool MifareClassic_ReadValueBlock
(
int Block,
int* Value

)

Parameters:

int Block Specify the address of the block to be read. The valid range of this param-
eter is between 0 and 255. Note that this function does not work with sector
trailers.

int* Value This parameter holds the value which was read from the tag if the operation
was successful.

Return: If the operation was successful, the return value is true, otherwise it is

false.

Remark: This function checks if the block has a valid value block format. If this is not the case, the
function returns false.

16.3.2 Write Value Block

Format a data block to a MIFARE Classic compliant value block and assign an initial value.

bool MifareClassic_WriteValueBlock
(

int Block,
int Value
);
Parameters:
int Block Specify the address of the block to be formatted. The valid range of this
parameter is between 0 and 255. Note that this function does not work with
sector trailers.
int Value This parameter holds the initial value of the value block.
Return: If the operation was successful, the return value is true, otherwise it is

false.

16.3.3 Increment Value Block

Credit a value block with a given increment value.

Page 79 of 204

16 MIFARE Classic Specific Transponder Operations %EC

bool MifareClassic_IncrementValueBlock

(

int Block,
int Value
);
Parameters:
int Block Specify the address of the block to be incremented. The valid range of this
parameter is between 0 and 255. Note that this function does not work with
sector trailers.
int Value This parameter holds the increment value.
Return: If the operation was successful, the return value is true, otherwise it is

false.

16.3.4 Decrement Value Block

Debit a value block with a given decrement value.

bool MifareClassic_DecrementValueBlock

(

int Block,
int Value
);
Parameters:
int Block Specify the address of the block to be decremented. The valid range of this
parameter is between 0 and 255. Note that this function does not work with
sector trailers.
int Value This parameter holds the decrement value.
Return: If the operation was successful, the return value is true, otherwise it is

false.

16.3.5 Copy Value Block

Copy a value block within a sector.

bool MifareClassic_CopyValueBlock
(
int SourceBlock,
int DestBlock

)
Parameters:
int SourceBlock Specify the address of the source block.
int DestBlock Specify the address of the destination block.
Return: If the operation was successful, the return value is true, otherwise it is

false.

Page 80 of 204

17 MIFARE Plus Specific Transponder Operations %EC

17 MIFARE Plus Specific Transponder Operations

MIFARE Plus is mostly compatible to MIFARE Classic, but comes with several enhancements regarding
security and functionality. The memory layout is compatible to MIFARE Classic. MIFARE Plus transpon-
ders incorporate four different levels of operation, these are called Security Level (SL).

Blank transponders are usually sold in SLO, which is used for personalisation of the transponder. Within
this level, the keys and data blocks can be written. When the personalisation process has finished, the
transponder has to be switched to a higher security level.

In usual cases, this is SL1 where the transponder is compatible to Mifare Classic, this means the login
process, memory layout and read/write operations are the same. In this case refer to the API description
of MIFARE Classic.

In case of MIFARE Plus X, the transponder may be switched from SL1 to SL2 where an additional AES
authentication becomes necessary before any memory operation is possible. All subsequent Crypto1 op-
erations are then depending on this authentication, as a session key is calculated and the Crypto1 key is
diversified for this session. So, after AES authentication, the API functions for MIFARE Classic have to be
used for accessing the memory.

MIFARE Plus S or X can be switched to SL3, where a AES authentication is necessary to access the
transponder memory. In case of MIFARE Plus X all operations are done fully encrypted, in case of MI-
FARE Plus S all operations are done in plain but with computation of an additional MAC. For memory
operations in SL3, the API functions described in the following chapters shall be used.

Please note, once a MIFARE Plus transponder has been switched to a higher security level, it cannot be
switched back again.

17.1 Personalisation

Personalisation can only be done if the transponder is operating in SLO. As all communication is done
in plain, this process should be conducted at a secure place. When all personalisation data has been
written, the personalisation must be finished by issuing the function Commit Personalisation. After that,
the personalisation becomes valid and the transponder is switched to SL1.

17.1.1 Write Personalisation

Use this function to write any personalisation data to a specific block of the transponder.

bool MFP_WritePerso(int BlockNr, const bytex Data);

Page 81 of 204

17 MIFARE Plus Specific Transponder Operations %EC

Parameters:

int BlockNr Specify the block number to be written. This can either be the number of a
sector block or a AES key.

const byte* Data Specify the data to be written with this parameter. The function expects
always 16 bytes.

Return: If the operation was successful, the return value is true, otherwise it is

false.

17.1.2 Commit Personalisation

This function shall be used to switch the transponder to SL1 when all personalisation has been finished.
After calling this function, the transponder has to be reselected in order to access it again.

bool MFP_CommitPerso(void);

Parameters: None
Return: If the operation was successful, the return value is true, otherwise it is
false.

17.2 Authenticate AES

Use this function to do a mutual authentication in AES with the transponder. The key may either be a
sector key or a special one like a level switch key. In case of MIFARE Plus running in SL2, a preceding
AES authentication is necessary before any following memory operations which are conducted in Crypto1.
A typical transaction flow looks like this:

Search Tag

N3
Authenticate AES

4

Mifare Classic Login

|2
Mifare Classic Read/Write Data

bool MFP_Authenticate(int CryptoEnv, int KeyBNr, const bytex Key);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. All
consecutive operations with the transponder shall be done using the speci-
fied environment.

int KeyBNr Specify the key number that shall be used for authentication. This can either
be a sector key or a special key like a level switch key.

const byte* Key Specify the key that shall be used for authentication. For AES, the key must
have a key length of 16 bytes.

Return: If the operation was successful, the return value is true, otherwise it is

false.

Page 82 of 204

17 MIFARE Plus Specific Transponder Operations %EC

17.3 Security Level 3

In Security Level 3 all memory related operations require a preceding AES authentication with the respec-
tive key. Please note, MIFARE Plus S does not support all the functionality of a MIFARE Plus X, e.g.
handling of value blocks is not supported here.

17.3.1 Read/Write Data
17.3.1.1 Read Data Block

Use this function to read a data block from a MIFARE Plus transponder.

bool MFP_ReadBlock(int CryptoEnv, int Block, byte* Data);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants.

int Block Specify the number of the block that shall be read.

byte* Data This parameter holds the data which was read from the tag if the operation
was successful. Note that this function always reads 16 bytes of data, so the
minimum array size of Data must be at least 16 bytes.

Return: If the operation was successful, the return value is true, otherwise it is

false.

17.3.1.2 Write Data Block

Use this function to write data to a block of a MIFARE Plus transponder.

bool MFP_WriteBlock(int CryptoEnv, int Block, const byte*x Data);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants.

int Block Specify the number of the block that shall be written.

const bytex Data This parameter holds the data which shall be written to the tag. Note that
this function always writes 16 bytes of data, so the minimum array size of
Data must be at least 16 bytes.

Return: If the operation was successful, the return value is true, otherwise it is

false.

Page 83 of 204

17 MIFARE Plus Specific Transponder Operations

ELATEC
oy

17.3.2 Handling of Value Blocks

17.3.2.1 Read Value Block

Use this function to read the

value stored in a MIFARE compliant value block.

bool MFP_ReadValueBlock(int CryptoEnv, int Block, int* Value);

Parameters:

int CryptoEnv

int Block

int* Value

Return:

Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants.
Specify the address of the block to be read. The valid range of this param-
eter is between 0 and 255. Note that this function does not work with sector
trailers.

This parameter holds the value which was read from the tag if the operation
was successful.

If the operation was successful, the return value is true, otherwise it is
false.

Remark: This function checks if the block has a valid value block format. If this is not the case, the

function returns

17.3.2.2 Write Value Block

false.

Format a data block to a MIFARE compliant value block and assign an initial value.

bool MFP_WriteValueBlock(int CryptoEnv, int Block, int Value);

Parameters:

int CryptoEnv

int Block

int Value

Return:

Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants.

Specify the address of the block to be formatted. The valid range of this
parameter is between 0 and 255. Note that this function does not work with
sector trailers.

This parameter holds the initial value of the value block.
If the operation was successful, the return value is true, otherwise it is

false.

17.3.2.3 Increment Value Block

Credit a value block with a given increment value.

bool MFP_IncrementValueBlock(int CryptoEnv, int Block, int Value);

Page 84 of 204

17 MIFARE Plus Specific Transponder Operations %EC

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants.

int Block Specify the address of the block to be incremented. The valid range of this
parameter is between 0 and 255. Note that this function does not work with
sector trailers.

int Value This parameter holds the increment value.

Return: If the operation was successful, the return value is true, otherwise it is

false.

17.3.2.4 Decrement Value Block

Debit a value block with a given decrement value.

bool MFP_DecrementValueBlock(int CryptoEnv, int Block, int Value);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants.

int Block Specify the address of the block to be decremented. The valid range of this
parameter is between 0 and 255. Note that this function does not work with
sector trailers.

int Value This parameter holds the decrement value.

Return: If the operation was successful, the return value is true, otherwise it is

false.

17.3.2.5 Copy Value Block

Copy a value block within a sector.

bool MFP_CopyValueBlock(int CryptoEnv, int SourceBlock, int DestBlock);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants.

int SourceBlock Specify the address of the source block.

int DestBlock Specify the address of the destination block.

Return: If the operation was successful, the return value is true, otherwise it is

false.

Page 85 of 204

18 MIFARE Ultralight/Ultralight C/Ultralight EV'1 Specific Transponder Operations

ELATEC
oy

18 MIFARE Ultralight/Ultralight C/Ultralight EV1
Specific Transponder Operations

18.1 Authentication (Ultralight C only)

Depending on the security settings of the transponder, a login with the valid transponder key might be
necessary prior performing any further operation.

18.1.1 Authentication with given Key

Use this function to authenticate at a Mifare Ultralight C transponder with a given key.

bool MifareUltralightC_Authenticate(const bytex Key);

Parameters:

const bytex Key

Return:

Pointer to an array of bytes, which has to contain 16 bytes. These bytes
represent the key for the authentication process.

If the operation was successful, the return value is true, otherwise it is
false.

Key (hex)

Description

49 45 4D 4B 41 45

21 4E 41 43 55 4F 59 46

52 42 Default Transport Key

Table 18.1: Well-known key for MIFARE Ultralight C transponders

Page 86 of 204

18 MIFARE Ultralight/Ultralight C/Ultralight EV'1 Specific Transponder Operations %EC

18.1.2 Authentication using SAM Card

Use this function to authenticate at a Mifare Ultralight C transponder with a key stored on a SAM card.
Depending on the security settings of the SAM card, an additional authentication between reader an SAM
might be necessary prior issuing this command.

bool MifareUltralightC_SAMAuthenticate
(
int KeyNo,
int KeyVersion,
const byte* DIVInput,
int DIVByteCnt
)3

Parameters:

int KeyNo Specify the number of the SAM key entry that shall be used for authentica-
tion.

int KeyVersion Specify the key version of the SAM key entry that shall be used for authen-
tication.

const byte* DIVInput Specify optional diversification input used for authentication.

int DIVByteCnt Specify the number of bytes for diversification input. Valid values are 0 to
31.

Return: If the operation was successful, the return value is true, otherwise it is
false.

18.2 Write Key from SAM to Transponder Key Storage Area

Use this function to transfer a key from a SAM card to the key storage area of a Mifare Ultralight C transpon-
der. Please note that the key stored on the SAM card must be dumpable. Depending on the security
settings of the SAM card, an additional authentication between reader an SAM might be necessary prior

issuing this command.

bool MifareUltralightC_WriteKeyFromSAM
(
int KeyNo,
int KeyVersion,
const bytex DIVInput,
int DIVByteCnt
)3

Page 87 of 204

18 MIFARE Ultralight/Ultralight C/Ultralight EV'1 Specific Transponder Operations %EC

Parameters:

int KeyNo Specify the number of the SAM key entry that shall be transfered.

int KeyVersion Specify the key version of the SAM key entry.

const byte* DIVInput Specify optional diversification input.

int DIVByteCnt Specify the number of bytes for diversification input. Valid values are 0 to
31.

Return: If the operation was successful, the return value is true, otherwise it is
false.

18.3 Read/Write Data

18.3.1 Read Page

Though the page size of this transponder family is 4 bytes, the transponder always returns 16 bytes of data.
This is achieved by reading four consecutive data pages, e.g. if page 4 is to be read, the transponder also
returns the content of page 5, 6 and 7. The transponder incorporates an integrated roll-back mechanism
if reading is done beyond the last physical available page address. E.g., in case of reading page 14 of
MIFARE Ultralight this would result in reading page 14, 15, 0, 1.

bool MifareUltralight_ReadPage
(

int Page,
byte*x Data
);
Parameters:
int Page Specify the address of the page to be read. The valid range of this parameter
is between 0 and 15 (Ultralight) or 0 and 43 (Ultralight C).
byte* Data This parameter holds the data which was read from the tag if the operation
was successful. Note that this function always reads 16 bytes of data, so the
minimum array size of Data must be at least 16 bytes.
Return: If the operation was successful, the return value is true, otherwise it is

false.

18.3.2 Write Page

Write 4 bytes of data to a data-page of the transponder. Compared to the read-function, this function pro-
cesses only one page at once.

bool MifareUltralight_WritePage
(
int Page,
const byte* Data
)3

Page 88 of 204

18 MIFARE Ultralight/Ultralight C/Ultralight EV'1 Specific Transponder Operations %EC

Parameters:

int Page

const bytex Data

Return:

Specify the address of the page to be written. The valid range of this param-
eter is between 2 and 15 (Ultralight) or 2 and 47 (Ultralight C).

This parameter holds the data which shall be written to the tag. Note that
this function always writes 4 bytes of data, so the minimum array size of Data
must be at least 4 bytes.

If the operation was successful, the return value is true, otherwise it is
false.

18.4 Mifare Ultralight EV1

18.4.1 Fast Read

The Fast Read function reads a number of pages beginning at a starting page from the transponder.

bool MifareUltralightEV1_FastRead(int StartPage, int NumberOfPages, byte* Data);

Parameters:
int StartPage
int NumberOfPages

bytex Data

Return:

Specify the address of the starting page.
Specify the number of pages to be read.

This buffer holds the received data from the tag. Take care for proper di-
mensioning, the buffer size must be at least NumberOfPages * 4.

If the operation was successful, the return value is true, otherwise it is

false.

18.4.2 Increment Counter

Use this function to increment of the 3 one-way counters.

bool MifareUltralightEV1_IncCounter(int CounterAddr, int IncrValue);

Parameters:
int CounterAddr
int IncrValue

Return:

18.4.3 Read Counter

Specify the address of the counter to be incremented.
Specify the increment value.

If the operation was successful, the return value is true, otherwise it is

false.

Use this function to read the value of one of the 3 one-way counters.

bool MifareUltralightEV1_ReadCounter (int CounterAddr, int* CounterValue);

Page 89 of 204

18 MIFARE Ultralight/Ultralight C/Ultralight EV'1 Specific Transponder Operations %EC

Parameters:
int CounterAddr
int* CounterValue

Return:

Specify the address of the counter to be read.
This parameter holds the returned counter value.

If the operation was successful, the return value is true, otherwise it is
false.

18.4.4 Read ECC Signature

Use this function to read the factory programmed 32 byte ECC signature, to verify NXP Semiconductors

as the silicon vendor.

bool MifareUltralightEV1_ReadSig(byte* ECCSig);

Parameters:

byte*x ECCSig

Return:

This buffer holds the returned ECC signature. The required buffer size is 32
bytes.

If the operation was successful, the return value is true, otherwise it is
false.

18.4.5 Get Transponder Information

Use this function to retrieve information about the transponder such as product version or storage size.

bool MifareUltralightEV1_GetVersion(bytex Version);

Parameters:
byte* Version

Return:

This buffer holds 8 bytes of version information.

If the operation was successful, the return value is true, otherwise it is
false.

18.4.6 Password Authentication

Use this function for password authentication. For authentication, a 4 bytes password and a 2 bytes ac-

knowledge are required.

bool MifareUltralightEV1i_PwdAuth(const bytex Password, const byte* PwdAck);

Parameters:
const bytex Password
const bytex PwdAck

Return:

The 4 bytes password is specified by this parameter.
This buffer holds 2 bytes of Password Acknowledge.

If the operation was successful, the return value is true, otherwise it is
false.

Page 90 of 204

18 MIFARE Ultralight/Ultralight C/Ultralight EV'1 Specific Transponder Operations %EC

18.4.7 Check Tearing Event

Use this function to check if a tearing event has happened at a specific counter.

bool MifareUltralightEV1_CheckTearingEvent (int CounterAddr, bytex ValidFlag);

Parameters:

int CounterAddr Specify the address of the counter to be checked.

byte* ValidFlag The validFlag is returned by this parameter. If no tearing event has hap-
pened, the returned value is 0xBD.

Return: If the operation was successful, the return value is true, otherwise it is

false.

Page 91 of 204

19 NTAG Specific Transponder Operations %EC

19 NTAG Specific Transponder Operations

19.1 Read/Write Data

19.1.1 Read Page

Though the page size of this transponder family is 4 bytes, the transponder always returns 16 bytes of data.
This is achieved by reading four consecutive data pages, e.g. if page 4 is to be read, the transponder also
returns the content of page 5, 6 and 7. The transponder incorporates an integrated roll-back mechanism if
reading is done beyond the last physical available page address. The function is available for all members
of the NTAG transponder family.

bool NTAG_ReadPage(int Page, bytex* Data);

Parameters:

int Page Specify the address of the page to be read. The valid range of this parameter
depends on the transponder type.

byte* Data This parameter holds the data which was read from the tag if the operation
was successful. Note that this function always reads 16 bytes of data, so the
minimum array size of Data must be at least 16 bytes.

Return: If the operation was successful, the return value is true, otherwise it is

false.

19.1.2 Write Page

Write 4 bytes of data to a data-page of the transponder. Compared to the read-function, this function pro-
cesses only one page at once. The function is available for all members of the NTAG transponder family.

bool NTAG_WritePage(int Page, const byte* Data);

Parameters:

int Page Specify the address of the page to be written. The valid range of this param-
eter depends on the transponder type.

const byte* Data This parameter holds the data which shall be written to the tag. Note that
this function always writes 4 bytes of data, so the minimum array size of Data
must be at least 4 bytes.

Return: If the operation was successful, the return value is true, otherwise it is

false.

Page 92 of 204

19 NTAG Specific Transponder Operations %EC

19.1.3 Fast Read

The Fast Read function reads a number of pages beginning at a starting page from the transponder. The
function is supported by NTAG21x and NT3H1xxx transponders.

bool NTAG_FastRead(int StartPage, int NumberOfPages, byte* Data);

Parameters:

int StartPage Specify the address of the starting page.

int NumberOfPages Specify the number of pages to be read.

byte* Data This buffer holds the received data from the tag. Take care for proper di-
mensioning, the buffer size must be at least NumberOfPages * 4.

Return: If the operation was successful, the return value is true, otherwise it is

false.

19.2 Miscellaneous functions

19.2.1 Read Counter
This function reads the value of the one-way counter. The function is supported by NTAG21x transponders.

Please note that the NFC_CNT_EN bit in ACCESS configuration byte must be set in order to make this function
work.

bool NTAG_ReadCounter(int* CounterValue);

Parameters:
int* CounterValue This parameter holds the returned counter value.
Return: If the operation was successful, the return value is true, otherwise it is

false.

19.2.2 Read ECC Signature

Use this function to read the factory programmed 32 byte ECC signature, to verify NXP Semiconductors
as the silicon vendor. The function is supported by NTAG21x transponders.

bool NTAG_ReadSig(bytex ECCSig);

Parameters:

byte* ECCSig This buffer holds the returned ECC signature. The required buffer size is 32
bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 93 of 204

19 NTAG Specific Transponder Operations %EC

19.2.3 Get Transponder Information

Use this function to retrieve information about the transponder such as product version or storage size.
The function is supported by NTAG21x and NT3H1xxx transponders.

bool NTAG_GetVersion(bytex Version);

Parameters:
byte* Version This buffer holds 8 bytes of version information.
Return: If the operation was successful, the return value is true, otherwise it is

false.

19.2.4 Password Authentication

Use this function for password authentication. For authentication, a 4 bytes password and a 2 bytes ac-
knowledge are required. The function is supported by NTAG21x transponders.

bool NTAG_PwdAuth(const byte* Password, const byte*x PwdAck);

Parameters:

const byte* Password The 4 bytes password is specified by this parameter.

const byte* PwdAck This buffer holds 2 bytes of Password Acknowledge.

Return: If the operation was successful, the return value is true, otherwise it is

false.

19.2.5 Select Sector

Use this function to perform a sector select in order o switch between different memory sectors of a
NT3H1XXX.

bool NTAG_SectorSelect(int Sector);

Parameters:
int Sector Specify the sector to be selected.
Return: If the operation was successful, the return value is true, otherwise it is

false.

Page 94 of 204

20 DESFire Specific Transponder Operations %EC

20 DESFire Specific Transponder Operations

The memory of a DESFire transponder is organized as a flexible file system. The transponder can hold
up to 28 applications and each application may contain up to 32 files of different type and size. Each
application can be secured by up to 14 cryptographic keys which are stored in the applications’s internal
key file. Applications are identified by a number, which must be unambiguous on the transponder. The
same rule applies to files within applications, these are identified by numbers which must be unambiguous
within the application.

By default, there exists a root-application with the identifier 0x000000 which defines the so-called transpon-
der level. This application cannot hold any files, it is intended to be used for basic administration of the
transponder.

Card

+ \i’ Application 1
+ \i’ Application 2

= @ Application 3
D Data File 1
D Data File 2
D Data File 3

W Key File

Figure 20.1: DESFire memory layout

A simple use-case could be: Search for a transponder, select the desired application, perform an authen-
tication with the respective key (if required), access data file for read or write operation.

Page 95 of 204

20 DESFire Specific Transponder Operations %EC

Search
Transponder

|

Select Application

Authentication
necessary ?

Yes

v

Authenticate

I

—Pp1 Read/Write Data

Figure 20.2: Simple way to gain access to the file system

20.1 Security Related Operations

20.1.1 Authenticate

This function shall be used to perform a mutual three pass authentication between reader and transponder.
The function supports both 3DES, 3K3DES and AES cryptography. In order to support both the DESFire
EV1 transponder family and the older DESFire MF3ICD40, the function incorporates a so-called Compati-
ble Mode.

After successful authentication, a session-key is generated which is used for all further cryptographic op-
erations. The authenticated state is invalidated in case of selecting an application, changing the key which
was used for the current authentication or a failed authentication.

Page 96 of 204

20 DESFire Specific Transponder Operations E#_NEC

On transponder level, depending on the security configuration, an authentication with the transponder
master key may be required to perform specific operations:

+ Gather information on the transponder

+ Change the transponder master key

» Change the transponder master key settings
» Create/delete applications

On application level, depending on the configuration, an authentication may be required to perform specific
operations:

» Gather information about the application

» Change the keys of the application

Create/delete files within the application
» Change access rights

» Access data files

bool DESFire_Authenticate
(
int CryptoEnv,
int KeyNoTag,
const bytex Key,
int KeyByteCount,
int KeyType,
int Mode
)3

Page 97 of 204

20 DESFire Specific Transponder Operations %EC

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. All
consecutive operations with the transponder shall be done using the speci-
fied environment.

int KeyNoTag Specify the key number that shall be used for authentication. On transpon-
der level, only key 0 is valid for authentication. On application level, one
can specify up to 14 keys which can be used for authentication. Both on
transponder and application level, key 0 identifies the respective master key.

const bytex Key Specify the key that shall be used for authentication. For 3DES/AES, the
key must have a key length of 16 bytes, for SK3DES the key must have a
key length of 24 bytes.

int KeyByteCount Specify the key length of the key. Use one of the predefined constants
DESF_KEYLEN_3DES, DESF_KEYLEN_3K3DES Or DESF_KEYLEN_AES.

int KeyType Specify the type of the specified key. Use one of the predefined constants
DESF_KEYTYPE_3DES, DESF_KEYTYPE_3K3DES or DESF_KEYTYPE_AES. The au-
thentication will be performed according to the specified key type.

int Mode Select either DESFire EV1 ISO-mode authentication or the compatible na-
tive DESFire authentication scheme. Use one of the predefined constants
DESF_AUTHMODE_COMPATIBLE or DESF_AUTHMODE_EV1i. Note that 3K3DES or
AES cryptography cannot be used in compatible mode.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Remark: By default, the initial value of any key is all zeros. E.g. after creation of an application, all
keys have this initial value.
Example:

// Perform AES-authentication using key O

const byte Key[16] =
{
0x00, Ox11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, OxAA, 0xBB, 0xCC, 0xDD, OxEE, OxFF
s

if (DESFire_Authenticate(
CRYPTO_ENVO,
0,
Key,
DESF_KEYLEN_AES,
DESF_KEYTYPE_AES,
DESF_AUTHMODE_EV1))

DoSomething() ;

Page 98 of 204

20 DESFire Specific Transponder Operations %EC

20.1.2 Get Key Version

This function can be used to read the current key version of any key that is stored on the transponder. If
the selected application is 0x000000, the command applies to the transponder master key and therefore
only key number 0 is valid for querying the key version.

bool DESFire_GetKeyVersion
(
int CryptoEnv,
int KeyNo,
byte* KeyVer
)3

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int KeyNoTag Specify the key number that shall be queried.

byte* KeyVer The key version information is returned as one byte by this parameter.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Example:

// Query key version of key O
byte KeyVer;

if (DESFire_GetKeyVersion(CRYPTO_ENVO,0,&KeyVer))

{
DoSomething() ;

}

20.1.3 Get Key Settings

This function allows to get information on the transponder- or application key settings. Depending on the
key settings, a preceding authentication with the respective master key may be required.

bool DESFire_GetKeySettings
(
int CryptoEnv,
TDESFireMasterKeySettings* MasterKeySettings

)

Page 99 of 204

20 DESFire Specific Transponder Operations EL'_NEC

Parameters:

int CryptoEnv

Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

TDESFireMasterKey This structure receives the queried master key settings.

Settings*

MasterKeySettings

Return: If the operation was successful, the return value is true, otherwise it is

false.
Members Length | Description
(Bits)

TDESFireKeySettings 8 This member holds the settings of the master key.

KeySettings

int NumberOfKeys 32 This member holds the number of available keys. The valid
range is 0 to 14.

int KeyType 32 This member holds the type of keys. Possible value
is one of the predefined constants DESF_KEYTYPE_3DES,
DESF_KEYTYPE_3K3DES or DESF_KEYTYPE_AES.

Table 20.1: Definition of TDESFireMasterKeySettings

Page 100 of 204

20 DESFire Specific Transponder Operations %EC

Members Length| Description
(Bits)

byte AllowChangeMasterKey 1 If set to 1 the master key is changeable, otherwise it cannot
be changed any more.

byte FreeDirectoryList 1 If set to 1 no preceding authentication with the master key
is required to perform the operations GetFilelDs, GetFileSet-
tings, GetKeySettings (application level) or GetApplication-
IDs, GetKeySettings (transponder level). If set to 0, an au-
thentication with the master key is required.

byte FreeCreateDelete 1 If set to 1 no preceding authentication with the master
key is required to perform the operations CreateFile/Delete-
File (application level) or CreateApplication/DeleteApplica-
tion (transponder level). If set to 0, an authentication with
the master key is required.

byte ConfigurationChangeable 1 If set to 1 the configuration is changeable if authenticated
with the master key. If set to 0, the configuration cannot be
changed any more.

byte ChangeKeyAccessRights 4 This member holds the access rights for changing keys. On
transponder level this member is set to 0.

0x0: Authentication with the master key is necessary to
change any key.

0x1...0xD: Authentication with the specified key is necessary
to change any key. The specified key and the master key can
only be changed after authentication with the master key.

OxE: Authentication with the key to be changed is necessary
to change the key.

OxF: All keys except the master key are frozen.

Table 20.2: Definition of TDESFireKeySettings

Example:

// Query key settings of application 0x123456
TDESFireMasterKeySettings MasterKeySettings;

if (DESFire_SelectApplication(0x123456))

{
if (DESFire_GetKeySettings (CRYPTO_ENVO,&MasterKeySettings))
{
DoSomething(MasterKeySettings) ;
}
}

20.1.4 Change Key Settings

This function allows to change the transponder- or application master key settings. The respective master
key settings can only be changed, if the bit ConfigurationChangeable of the current key settings was not

Page 101 of 204

20 DESFire Specific Transponder Operations E#_NEC

cleared before. In order to change the key settings, a preceding authentication with the respective master
key is required in general.

bool DESFire_ChangeKeySettings

(
int CryptoEnv,

const TDESFireMasterKeySettings* MasterKeySettings
)3

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

const TDESFireMasterKey This structure holds the new master key settings. See chapter Get Key

Settings* Settings for details.

MasterKeySettings

Return: If the operation was successful, the return value is true, otherwise it is
false.

20.1.5 Change Key

This function allows to change a key. The respective key settings define (see chapter Get Key Settings)
whether changing of a key is permitted or not and which key must be used for authentication before calling

this function.

bool DESFire_ChangeKey
(
int CryptoEnv,
int KeyNo,
const bytex 0ldKey,
int 0ldKeyByteCount,
const byte* NewKey,
int NewKeyByteCount,
byte KeyVersion,
const TDESFireMasterKeySettings* MasterKeySettings

)

Page 102 of 204

ELATEC

20 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv

int KeyNo

const bytex 0ldKey
int 0ldKeyByteCount
const bytex NewKey
int NewKeyByteCount

byte KeyVersion

Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

Specify the key number that shall be changed.
Specify the old key.

Specify the length of the old key in bytes.
Specify the new key.

Specify the length of the new key in bytes.
Specify the key version of the new key.

const TDESFireMasterKey This structure holds the current master key settings. See chapter Get Key

Settingsx*
MasterKeySettings

Return:

Example:

Settings for details.

If the operation was successful, the return value is true, otherwise it is
false.

// Change key 1 of application 0x123456

const byte oldKey[16] =

{

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

};

const byte newKey[16] =

{

0x00, Ox11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, OxAA, 0xBB, 0xCC, 0xDD, OxEE, OxFF

};

TDESFireMasterKeySettings MasterKeySettings;

if (!DESFire_SelectApplication(0x123456))

{

return; // Error selecting application

}

if (!DESFire_GetKeySettings(CRYPTO_ENVO, &MasterKeySettings))

{

return; // Error gathering key settings

}

if (MasterKeySettings.KeySettings.ChangeKeyAccessRights == 0)

{

// Authenticate with master key
if (!DESFire_Authenticate(

CRYPTO_ENVO,
0,
oldKey,

DESF_KEYLEN_AES,

DESF_AUTHMODE_EV1))

{

return; // Authentication error

}

if (!DESFire_ChangeKey (

Page 103 of 204

20 DESFire Specific Transponder Operations %EC

CRYPTO_ENVO,

1,

oldKey,
DESF_KEYLEN_AES,
newKey,
DESF_KEYLEN_AES,
0x20,
&MasterKeySettings))

return; // Error changing key 1

20.2 Transponder Related Operations

20.2.1 Create Application

This function allows to create a new application on the transponder. Depending on the security settings of
the transponder, a preceding authentication with the transponder master key may be required, see chapter
Get Key Settings for details.

bool DESFire_CreateApplication
(
int CryptoEnv,
int AID,
const TDESFireMasterKeySettings* MasterKeySettings
)3

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int AID Specify the Application ID of the new application to be created. The AID

consists of 24 bit, its value must be unique on the transponder. The value
0x000000 is reserved for the root application.

const TDESFireMasterKey This structure holds the master key settings of the new application. See

Settingsx* chapter Get Key Settings for details.
MasterKeySettings
Return: If the operation was successful, the return value is true, otherwise it is
false.
Example:

// Create application 0x123456

TDESFireMasterKeySettings MasterKeySettings;

MasterKeySettings.KeySettings.AllowChangeMasterKey = true;
MasterKeySettings.KeySettings.FreeDirectoryList = true;
MasterKeySettings.KeySettings.FreeCreateDelete = true;
MasterKeySettings.KeySettings.ConfigurationChangeable = true;

Page 104 of 204

20 DESFire Specific Transponder Operations %EC

MasterKeySettings.KeySettings.ChangeKeyAccessRights = 0x0;
MasterKeySettings.NumberOfKeys = 2;
MasterKeySettings.KeyType DESF_KEYTYPE_AES;

if (DESFire_CreateApplication(
CRYPTO_ENVO,

0x123456,
&MasterKeySettings))
{
DoSomething() ;
}

20.2.2 Delete Application

This function allows to delete an existing application on the transponder. Depending on the security set-
tings of the transponder, a preceding authentication with the transponder master key may be required, see
chapter Get Key Settings for details.

bool DESFire_DeleteApplication

(
int CryptoEnv,

int AID
);
Parameters:
int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.
int AID Specify the Application ID of the application that shall be deleted. The AID
consists of 24 bit. The value 0x000000 is reserved for the root application
hence this AID cannot be deleted.
Return: If the operation was successful, the return value is true, otherwise it is

false.

20.2.3 Get Application IDs

This function allows to list all application IDs that exist on the transponder. Depending on the security
settings of the transponder, a preceding authentication with the transponder master key may be required,
see chapter Get Key Settings for detalils.

bool DESFire_GetApplicationIDs
(
int CryptoEnv,
int*x AIDs,
int* NumberOfAIDs,
int MaxAIDCnt
)3

Page 105 of 204

20 DESFire Specific Transponder Operations %EC

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int* AIDs After successful completion of this function, this parameter holds a list of the
retrieved application IDs.

int* NumberOfAIDs This parameter holds the number of retrieved application IDs.

int MaxAIDCnt Specify the maximum number of application IDs, that can be stored in the ar-
ray AIDs. Note: Up to 28 applications can be stored on a DESFire transpon-
der, so take care for proper dimensioning of the array AIDs.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Example:

// List applications stored on the transponder

int AIDList[28];
int NumberOfAIDs;

if (DESFire_GetApplicationIDs(
CRYPTO_ENVO,

AIDList,

&Number0fAIDs,

sizeof (AIDList)/sizeof (int)))
{

DoSomething (AIDList ,NumberOfAIDs) ;
}

20.2.4 Select Application

This function is used to select an application in order to perform further operations such as reading or
writing. Depending on the security settings of the selected application, an authentication with one of the
application’s keys may be required after selection.

bool DESFire_SelectApplication
(
int CryptoEnv,

int AID
);
Parameters:
int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.
int AID This parameter holds the application ID of the application to be selected.
Return: If the operation was successful, the return value is true, otherwise it is

false.

Page 106 of 204

20 DESFire Specific Transponder Operations %EC

20.2.5 Format Transponder

Calling this function results in formatting the transponder. This means, all applications including their files
and keys are destroyed and the occupied memory space is released for future use. For proper usage, a
preceding authentication with the transponder master key is required.

bool DESFire_FormatTag
(
int CryptoEnv

)

20.2.6 Get Transponder Information

This function can be used to gather detailed information about the DESFire transponder regarding hard-
ware and software version.

bool DESFire_GetVersion
(
int CryptoEnv,
TDESFireVersion* Version

)

Parameters:
int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.
TDESFireVersion* This structure receives the queried manufacturing related information.
Version
Return: If the operation was successful, the return value is true, otherwise it is
false.
Members Length| Description
(Bits)
TDESFireTagInfo HWInfo 80 This member holds the hardware related version information.
TDESFireTagInfo SWInfo 80 This member holds the software related version information.
TDESFireProdInfo ProdInfo 112 | This member holds manufacturing specific information.

Table 20.3: Definition of TDESFireVersion

Page 107 of 204

20 DESFire Specific Transponder Operations

ELATEC
oy

Members Length | Description
(Bits)
byte VendorID 8 Codes the vendor ID (0x04 stands for NXP).
byte Type 8 Codes the type (here 0x01).
byte SubType 8 Codes the subtype(here 0x01).
byte VersionMajor 8 Codes the major version number.
byte VersionMinor 8 Codes the minor version number.
uint32_t StorageSize 32 Size of EEPROM in bytes.
byte CommunicationProtocol 8 Codes the communication protocol type (here 0x05 means
ISO14443-3 and -4).
Table 20.4: Definition of TDESFireTagInfo
Members Length| Description
(Bits)
byte UID[7] 56 This member holds the unique serial number. If the
transponder is configured to Random ID, the UID is set to
0x00.
byte ProdBatchNumber [5] 40 Codes the production batch number.
byte 8 Codes the calendar week of production.
CalendarWeekOfProduction
byte YearOfProduction 8 Codes the year of production.

20.2.7 Get Available Memory Space

Table 20.5: Definition of TDESFireProdInfo

This function allows to gather the available memory space of the transponder. A preceding authentication

is not required.

bool DESFire_FreeMem
(
int CryptoEnv,
int* FreeMemory

)

Parameters:

int CryptoEnv

Specify a cryptographic environment by this parameter. The valid range is

CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int* FreeMemory

After successful completion of this function, the available memory size in

bytes is returned by this parameter.

Return:

false.

If the operation was successful, the return value is true, otherwise it is

Page 108 of 204

20 DESFire Specific Transponder Operations %EC

20.2.8 Get Card UID

This function allows to retrieve the card UID in case of random ID. A preceding authentication with any key
is required prior calling this function.

bool DESFire_GetUID
(
int CryptoEnv,
bytex UID,
int* Length,
int BufferSize

)

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

byte* UID After successful completion of this function, the real card UID is returned by
this parameter. Note: The UID usually occupies 7 bytes, so take care for
proper dimensioning of the array UID.

int* Length The length in bytes of the UID is returned by this parameter.

int BufferSize This parameter specifies the size of the array UID in bytes.

Return: If the operation was successful, the return value is true, otherwise it is

false.

20.2.9 Set Transponder Configuration
20.2.9.1 Disable Format Tag

When this function is called, formatting the transponder is not possible any more (see chapter Format
Transponder). A preceding authentication with the transponder master key is required prior calling this
function. Note: Disabling tag formatting cannot be reset any more.

bool DESFire_DisableFormatTag
(
int CryptoEnv
)3

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

Return: If the operation was successful, the return value is true, otherwise it is

false.

Page 109 of 204

20 DESFire Specific Transponder Operations %EC

20.2.9.2 Enable Random ID

When this function is called, the transponder is turned into Random ID mode, this means the real UID can
only be retrieved by authenticating to the transponder and calling the function Get Card UID. A preceding
authentication with the transponder master key is required prior calling this function. Note: Setting the
transponder to Random ID mode cannot be reset any more.

bool DESFire_EnableRandomID

(
int CryptoEnv
)3

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

Return: If the operation was successful, the return value is true, otherwise it is

false.

20.2.9.3 Set Default Key

This function can be used to specify the default key, which is applied when e.g. a new application is
created on the transponder. By default, keys are initialized to 0x00. A preceding authentication with the
transponder master key is required prior calling this function.

bool DESFire_SetDefaultKey
(
int CryptoEnv,
const bytex Key,
int KeyByteCount,
byte KeyVersion
)3

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

const byte* Key This parameter specifies the new default key.

int KeyByteCount This parameter specifies the length of the new default key in bytes. Use
one of the predefined constants DESF_KEYLEN_3DES, DESF_KEYLEN_3K3DES or
DESF_KEYLEN_AES.

byte KeyVersion This parameter specifies the default key version.

Return: If the operation was successful, the return value is true, otherwise it is

false.

Page 110 of 204

20 DESFire Specific Transponder Operations %EC

20.2.9.4 Set User-defined Answer To Select (ATS)

This function can be used to specify a user-defined Answer To Select (ATS) which is returned by the
transponder after RATS. Changing the ATS to a non-default value shall only be carried out by experts as
a ATS longer than 16 bytes could cause problems with readers that support only frame sizes of max. 16
bytes. The ATS must be formatted as follows: TL TO TA TB TC + Historical bytes. The default ATS of
DESFire EV1 is TL=0x06, T0O=0x75, TA=0x77, TB=0x81, TC=0x02, Historical Bytes=0x80.

bool DESFire_SetATS
(
int CryptoEnv,
const bytex ATS,

int Length
);
Parameters:
int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.
const byte* ATS This parameter specifies the new ATS.
int Length This parameter specifies the length of the new ATS in bytes.
Return: If the operation was successful, the return value is true, otherwise it is

false.

20.3 Application Related Operations

This section deals with file handling within an application of a DESFire transponder. An application can
hold three different basic file types: Data files, Value files and Record Files. Data files are available either
with or without integrated backup-mechanism, Value files and Record files always incorporate integrated
backup. There exist two types of record files: Linear record files and Cyclic Record Files.

Some functions for file handling are using the data structure TDESFireFileSettings which defines all
relevant file settings. See the following tables for reference:

Coding of access rights:

Every file holds four different access rights, each access right is coded in one nibble. These four nibbles
are concatenated and form the 16 bit variable AccessRights.

One nibble codes 16 possible values. If it codes a number between 0 and 13, this references a certain key
number within the application.

If the number is 14, this means "free" access so there is no authentication necessary to perform the
respective operation on the file. In case of coding the number 15, this means "deny" access.

20.3.1 Create File

This section deals with the creation of new files within applications. Depending on the specified file type,
the file is either created with or without integrated backup-mechanism. Each file requires an unambiguous
identifier which is coded in one byte in the range from 0x00 to Ox1F. During creation of the file, the level of
security is defined in the communication settings. Communication can be either plain, secured by MAC or

Page 111 of 204

20 DESFire Specific Transponder Operations

ELATEC
oy

Members Length| Description
(Bits)
byte FileType 8 This member defines the file type. Possi-
ble values are: DESF_FILETYPE_STDDATAFILE,

DESF_FILETYPE_BACKUPDATAFILE,
DESF_FILETYPE_VALUEFILE, DESF_FILETYPE_LINEARRECORDFILE
DESF_FILETYPE_CYCLICRECORDFILE.

byte CommSet 8 This member defines the communication settings be-
tween reader and transponder when the file is ac-
cessed. Possible values are: DESF_COMMSET_PLAIN,
DESF_COMMSET_PLAIN_MACED, DESF_COMMSET_FULLY_ENC

uint16_t AccessRights 16 This member holds the access rights.

union 32to | This member holds file type specific information.

TDESFireSpecificFileInfo 128

SpecificFileInfo

Table 20.6: Definition of TDESFireFileSettings

15...12 11...8 7.4 3..0
Read Access Write Access Read/Write Access Change Access Rights

Table 20.7: Coding of AccessRights
Members Length| Description

(Bits)

struct 32 Definition of data file settings.
TDESFireDataFileSettings
DataFileSettings
struct 128 | Definition of value file settings.
TDESFireValueFileSettings
ValueFileSettings
struct 96 Definition of record file settings.
TDESFireRecordFileSettings
RecordFileSettings

Table 20.8: Definition of union TDESFireSpecificFileInfo

Members Length| Description
(Bits)
uint32_t FileSize 32 Definition of the data file size.

Table 20.9: Definition of struct TDESFireDataFileSettings

fully enciphered. Furthermore, the access rights are assigned to certain keys held by the application.
Depending on the security settings of the application, a preceding authentication with the application mas-
ter key may be required, see chapter Get Key Settings for details.

Page 112 of 204

20 DESFire Specific Transponder Operations

ELATEC
oy

Members Length | Description
(Bits)

uint32_t LowerLimit 32 Definition of the lower limit which must not be passed by a
debit operation.

uint32_t UpperLimit 32 Definition of the upper limit which must not be passed by a
credit operation.

uint32_t LimitedCreditValue 32 Definition of the initial value of the file at file creation.

bool LimitedCreditEnabled 32 LimitedCredit feature enabled or disabled.

Table 20.10: Definition of struct TDESFireValueFileSettings

CurrentNumberOfRecords

Members Length | Description
(Bits)
uint32_t RecordSize 32 Definition of the size of one single record in bytes.
uint32_t MaxNumberOfRecords 32 Definition of the maximum number of records.
uint32_t 32 Definition of the current number of records. This member is

ignored at file creation.

Table 20.11: Definition of struct TDESFireRecordFileSettings

bool DESFire_CreateDataFile
(
int CryptoEnv,
int FileNo,

const TDESFireFileSettings* FileSettings

)

bool DESFire_CreateValueFile
(
int CryptoEnv,
int FileNo,

const TDESFireFileSettings* FileSettings

)

bool DESFire_CreateRecordFile

(
int CryptoEnv,
int FileNo,

const TDESFireFileSettings* FileSettings

)

Page 113 of 204

ELATEC

20 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv

Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int FileNo Specify the file ID. If the ID already exists within the application, this results
in an error.
const This member holds the file settings. description of

TDESFireFileSettings* TDESFireFileSettings for details.
FileSettings

Return: If the operation was successful, the return value is true, otherwise it is

false.
Example:

// Create new standard data file (without backup)
// in application 0x123456

TDESFireFileSettings FileSettings;
int FilelD;

if (DESFire_SelectApplication(0x123456))
{
// We create a standard data file
FileSettings.FileType = DESF_FILETYPE_STDDATAFILE;
// Communication between reader and tag is fully enciphered
FileSettings.CommSet = DESF_COMMSET_FULLY_ENC;
// Read Access : Key 1
// Write Access : Key 2
// Read/Write : Key 3
// Change Settings : Key 4
FileSettings.AccessRights = 0x1234;
// File size shall be 512 bytes
FileSettings.SpecificFileInfo.DataFileSettings.FileSize = 512;
// Assign an identifier to the file
FileID = 0x12;
if (DESFire_CreateDataFile(CRYPTO_ENVO, FileID, &FileSettings))
{
DoSomething() ;
}

20.3.2 Delete File

This function allows to permanently deactivate a file within an application. This means, the allocated mem-
ory is not released for further usage, only the file number can be re-used for creating a new file. In order
to re-use the memory of deleted files, this requires formatting the transponder but this leads to permanent
loss of any application data. Depending on the security settings of the application, a preceding authenti-
cation with the application master key may be required, see chapter Get Key Settings for detalils.

bool DESFire_DeleteFile
(
int CryptoEnv,
int FileNo

Page 114 of 204

20 DESFire Specific Transponder Operations %EC

)

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int FileNo Specify the ID of the file which shall be deleted. If the ID doesn’t exist within
the application, this results in an error.

Return: If the operation was successful, the return value is true, otherwise it is

false.

20.3.3 Get File IDs

This function allows to list all file IDs that exist within the currently selected application. Each file ID is
coded in one byte in the range from 0x00 to 0x1F. Duplicate values are not possible as each file must have
an unambiguous identifier. Depending on the security settings of the application, a preceding authentica-
tion with the application master key may be required, see chapter Get Key Settings for details.

bool DESFire_GetFilelIDs
(
int CryptoEnv,
bytex FileIDList,
int* FileIDCount,
int MaxFileIDCount

)

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

byte* FileIDList After successful completion of this function, this parameter holds a list of the
retrieved file IDs.

int* FileIDCount This parameter holds the number of retrieved file IDs.

int MaxFileIDCount Specify the maximum number of file IDs, that can be stored in the array
FileIDList. Note: Up to 32 files can be stored within an application, so take
care for proper dimensioning of the array FileIDList.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Example:

See chapter Get File Settings for a comprehensive example.

20.3.4 Get File Settings

This function allows to query the file settings of an existing file within an application. The returned infor-
mation depends on the type of the file. Depending on the security settings of the application, a preceding
authentication with the application master key may be required, see chapter Get Key Settings for details.

Page 115 of 204

ELATEC

20 DESFire Specific Transponder Operations

bool DESFire_GetFileSettings
(
int CryptoEnv,

int FileNo,
TDESFireFileSettings* FileSettings
);
Parameters:
int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.
int FileNo Specify the file ID which shall be queried.
TDESFireFileSettings* This member holds the returned file settings. See description of
FileSettings TDESFireFileSettings for details.
Return: If the operation was successful, the return value is true, otherwise it is
false.
Example:

// Query file settings of all files in application 0x123456
TDESFireFileSettings FileSettings;

// An application can hold up to 32 files
byte FileIDList[32];
int FileIDCount;

int 1i;

if (DESFire_SelectApplication(0x123456))
{
// Gather a list of present file IDs
if (DESFire_GetFileIDs(
CRYPTO_ENVO,
FileIDList,
&FileIDCount,
sizeof (FileIDList)))

for (i=0; i<FileIDCount; i++)
{
// Query the settings of each file
if (DESFire_GetFileSettings/(
CRYPTO_ENVO,
FileIDList[i],
&FileSettings))

switch(FileSettings.FileType)

{

case DESF_FILETYPE_STDDATAFILE:
DoSomething() ;
break;

case DESF_FILETYPE_VALUEFILE:
DoSomethingElse () ;
break;

Page 116 of 204

20 DESFire Specific Transponder Operations %EC

20.3.5 Change File Settings

This function allows to change the access parameters such as communication settings and access rights
of an existing file. Depending on the actual change access rights of the file, authentication with the respec-
tive key has to be performed before calling this function. Furthermore, the change access right must be
different from "deny". See Coding of Access Rights for details.

bool DESFire_ChangeFileSettings
(
int CryptoEnv,
int FileNo,
int NewCommSet,
int 0OldAccessRights,
int NewAccessRights

)

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int FileNo Specify the file ID whose settings shall be changed.

int NewCommSet Specify the new communication settings. Possible val-
ues are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

int OldAccessRights Specify the current Access Rights of the file.

int NewAccessRights Specify the new Access Rights of the file.

Return: If the operation was successful, the return value is true, otherwise it is

false.

20.4 File Related Operations

20.4.1 Data Files
20.4.1.1 Read Data

This function shall be used to access a standard or backup data file in order to read from it. Depending
on the file’s access rights, a preceding authentication with the read or read/write key has to be done, see
Coding of Access Rights for details. The function allows segmented access, this means the user is able to
either read the entire file or only a part starting at a user-defined offset.

bool DESFire_ReadData
(
int CryptoEnv,

Page 117 of 204

20 DESFire Specific Transponder Operations

ELATEC

RFID Systems

int FileNo,
byte* Data,
int Offset,
int Length,
int CommSet

)

Parameters:

int CryptoEnv

Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int FileNo Specify the ID of the file that shall be read.

byte* Data After successful completion of this function, the buffer referred by this pa-
rameter holds the data which was read from the transponder. Take care for
adequate dimensioning.

int Offset Specify the starting address for reading. The valid range of this parameter
is 0x000000 to FileSize - 1. In case of address-range violation, the function
returns with an error.

int Length Specify the length of data that shall be read. The valid range of this pa-
rameter is FileSize - Offset. In case of address-range violation, the function
returns with an error.

int CommSet Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possi-
ble values are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Example:

// Read data file 0x12 which is located in application 0x123456
TDESFireFileSettings FileSettings;
int ReadAccess;

// This is the buffer that receives the data to be read
byte Data[512];

// If an authentication is necessary, we assume this would be
// the key that gives read access
const byte KeyRead[16] =
{
0x00, Ox11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, OxAA, 0xBB, 0xCC, O0xDD, OxEE, OxFF
¥
if (!DESFire_SelectApplication(CRYPTO_ENVO, 0x123456))

return; // Error

// Gather file settings
if (!DESFire_GetFileSettings(CRYPTO_ENVO, 0x12, &FileSettings))
return; // Error

Page 118 of 204

20 DESFire Specific Transponder Operations %QEC

// Read access rights are located in the highest nibble of
// FileSettings.AccessRights
ReadAccess = (FileSettings.AccessRights >> 12) & 0x000F;

switch (ReadAccess)

{
case 15: // Access denied
return;
case 14: // Free access
break;
default:
// Authenticate with the "reading-key"
if (!'DESFire_Authenticate(
CRYPTO_ENVO,
ReadAccess,
KeyRead,
DESF_KEYLEN_AES,
DESF_KEYTYPE_AES,
DESF_AUTHMODE_EV1))
return; // Error
}

// Check size of reading buffer

if (FileSettings.SpecificFileInfo.DataFileSettings.FileSize >
sizeof (Data))
return; // Buffer size not enough

// Read entire data file

if (DESFire_ReadData(
CRYPTO_ENVO,
0x12,
Data,
0,
FileSettings.SpecificFileInfo.DataFileSettings.FileSize,
FileSettings.CommSet))

DoSomething() ;

20.4.1.2 Write Data

This function shall be used to access a standard or backup data file in order to write to it. Depending on the
file’s access rights, a preceding authentication with the write or read/write key has to be done, see Coding
of Access Rights for details. The function allows segmented access, this means the user is able to either
rewrite the entire file or only a part starting at a user-defined offset.

bool DESFire_WriteData
(
int CryptoEnv,
int FileNo,
const bytex Data,
int Offset,
int Length,
int CommSet

Page 119 of 204

20 DESFire Specific Transponder Operations

ELATEC

);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int FileNo Specify the ID of the file that shall be written.

const byte* Data The buffer referred by this parameter holds the data which is written to the
file.

int Offset Specify the starting address for writing. The valid range of this parameter
is 0x000000 to FileSize - 1. In case of address-range violation, the function
returns with an error.

int Length Specify the length of data that shall be written. The valid range of this pa-
rameter is FileSize - Offset. In case of address-range violation, the function
returns with an error.

int CommSet Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possi-
ble values are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

Return: If the operation was successful, the return value is true, otherwise it is

false.

Remark: If data is written to a Backup Data File, it is necessary to validate the written data with
the function Commit Transaction. Calling the function Abort Transaction will invalidate all

changes.
Example:

// Write to data file 0x12 which is located in application 0x123456
TDESFireFileSettings FileSettings;
int WriteAccess;

// This is the buffer that holds the data to be written
const byte Datal[] =
{
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08
};

// If an authentication is necessary, we assume this would be
// the key that gives write access
const byte KeyWrite[16] =
{
0x00, Ox11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, OxAA, 0xBB, 0xCC, 0xDD, OxEE, OxFF
s

if (!DESFire_SelectApplication(CRYPTO_ENVO, 0x123456))
return; // Error

// Gather file settings
if (!DESFire_GetFileSettings(CRYPTO_ENVO, 0x12, &FileSettings))
return; // Error

Page 120 of 204

20 DESFire Specific Transponder Operations MEC

// Write access rights are located in bits 11...8 of
// FileSettings.AccessRights
WriteAccess = (FileSettings.AccessRights >> 8) & 0x000F;

switch (WriteAccess)

{
case 15: // Access denied
return;
case 14: // Free access
break;
default:
// Authenticate with the "writing-key"
if (!'DESFire_Authenticate(
CRYPTO_ENVO,
WriteAccess,
KeyWrite,
DESF_KEYLEN_AES,
DESF_KEYTYPE_AES,
DESF_AUTHMODE_EV1))
return; // Error
}

// Check size of file

if (FileSettings.SpecificFileInfo.DataFileSettings.FileSize <
sizeof (Data))
return; // File size not enough

// Write to data file

if (DESFire_WriteData(
CRYPTO_ENVO,
0x12,
Data,
0,
sizeof (Data),
FileSettings.CommSet))

DoSomething() ;

20.4.2 Value Files
20.4.2.1 Get Value

This function allows to read the current value from a Value File. Depending on the file’s access rights,
a preceding authentication with the read, write or read/write key has to be done, see Coding of Access
Rights for details.

bool DESFire_GetValue
(
int CryptoEnv,
int FileNo,
int* Value,
int CommSet

)

Page 121 of 204

20 DESFire Specific Transponder Operations

ELATEC
oy

Parameters:

int CryptoEnv

int FileNo

int*x Value

int CommSet

Return:

20.4.2.2 Debit

Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

Specify the ID of the Value File whose value shall be queried.

After successful completion of this function, this parameter holds the value
which was read from the file.

Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possi-
ble values are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET _FULLY_ENC.

If the operation was successful, the return value is true, otherwise it is
false.

This function allows to decrease a value stored in a Value File. The function requires a preceding au-
thentication with the read, write or read/write key, see Coding of Access Rights for details. The value
modifications of Credit, Debit and Limited Credit functions are cumulated until the function Commit Trans-

action is called.

If the Limited Credit feature is enabled, the new limit for a subsequent Limited Credit function call is set
to the sum of Debit modifications within one transaction before calling Commit Transaction. This assures,
that a Limited Credit can not re-book more values than a debiting transaction deducted before.

bool DESFire_Debit

(

int CryptoEnv,
int FileNo,
const int Value,
int CommSet

)

Parameters:

int CryptoEnv

int FilelNo
const int Value

int CommSet

Return:

Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

Specify the ID of the Value File that shall be debited.
The value stored in the value file will be decreased by this parameter.

Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possi-
ble values are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

If the operation was successful, the return value is true, otherwise it is
false.

Remark: After modifying value files, it is necessary to validate the transaction with the function Commit
Transaction. Calling the function Abort Transaction will invalidate all changes.

Page 122 of 204

20 DESFire Specific Transponder Operations %EC

20.4.2.3 Credit

This function allows to increase a value stored in a Value File. The function requires a preceding authenti-
cation with the read/write key, see Coding of Access Rights for details. The value modifications of Credit,
Debit and Limited Credit functions are cumulated until the function Commit Transaction is called.

If the Limited Credit feature is enabled, this function cannot be used. Use the function Limited Credit in-
stead.

bool DESFire_Credit
(
int CryptoEnv,
int FileNo,
const int Value,
int CommSet

)

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int FileNo Specify the ID of the Value File that shall be credited.

const int Value The value stored in the value file will be increased by this parameter.

int CommSet Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possi-
ble values are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

Return: If the operation was successful, the return value is true, otherwise it is

false.

Remark: After modifying value files, it is necessary to validate the transaction with the function Commit
Transaction. Calling the function Abort Transaction will invalidate all changes.

20.4.2.4 Limited Credit

This function allows a limited increase of a value stored in a Value File without having full read/write per-
missions to the file. This feature can only be used if it has been enabled during file creation. The function
requires a preceding authentication with the write or read/write key, see Coding of Access Rights for de-
tails. The value modifications of Credit, Debit and Limited Credit functions are cumulated until the function
Commit Transaction is called.

After calling this function, the new limit is set to 0, regardless of the amount which has been re-booked.
Hence, this function can only be used once after a Debit transaction.

bool DESFire_LimitedCredit
(
int CryptoEnv,
int FileNo,
const int Value,
int CommSet

)

Page 123 of 204

20 DESFire Specific Transponder Operations

ELATEC
oy

Parameters:

int CryptoEnv

int FileNo

const int Value

int CommSet

Return:

Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

Specify the ID of the Value File that shall be credited.

The value stored in the value file will be increased by this parameter. It is
limited to the sum of Debit operations on this value file within the most recent
transaction containing at least one Debit.

Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possi-
ble values are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

If the operation was successful, the return value is true, otherwise it is
false.

Remark: After modifying value files, it is necessary to validate the transaction with the function Commit
Transaction. Calling the function Abort Transaction will invalidate all changes.

20.4.3 Record Files

20.4.3.1 Read Records

Use this function to read out a set of complete records from a Record File. The function requires a preced-
ing authentication with the read or read/write key, see Coding of Access Rights for details.

bool DESFire_ReadRecords

(

int CryptoEnv,

int FileNo,

byte* RecordData,
int* RecDataByteCnt,
int Offset,

int Number(QOfRecords,
int RecordSize,

int CommSet

)

Page 124 of 204

20 DESFire Specific Transponder Operations %EC

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int FileNo Specify the ID of the file that shall be read.

byte* RecordData After successful completion of this function, the buffer referred by this pa-
rameter holds the data which was read from the transponder. Take care for
adequate dimensioning.

int* RecDataByteCnt The total number of bytes read from the transponder is represented by this
parameter.

int Offset Specify the offset of the newest record to be read out. The valid range of
this parameter is 0x000000 to number of existing records - 1. In case of
0x000000 the latest record is read out.

int NumberOfRecords Specify the number of records to be read out.

int CommSet Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possi-
ble values are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

Return: If the operation was successful, the return value is true, otherwise it is

false.

20.4.3.2 Write Record

Use this function to write data to a Record File. The function requires a preceding authentication with
the write or read/write key, see Coding of Access Rights for details. In order to validate writing, a call of
Commit Transaction becomes necessary. If writing is not validated, a new WriteRecord command writes
to the already created record.

bool DESFire_WriteRecord
(
int CryptoEnv,
int FileNo,
const bytex Data,
int Offset,
int Length,
int CommSet

)

Page 125 of 204

20 DESFire Specific Transponder Operations %EC

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int FileNo Specify the ID of the file that shall be read.

const bytex Data This buffer holds the record data to be written.

int Offset Specify the offset in bytes within one single record. The valid range of this
parameter is 0x000000 to record size - 1.

int Length Specify the length of data to be written. The parameter has to be in the
range from 0x000001 to record size - offset.

int CommSet Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possi-
ble values are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

Return: If the operation was successful, the return value is true, otherwise it is

false.

20.4.3.3 Clear Record File

Use this function to reset a Record File to the empty state. The function requires a preceding authentica-
tion with the read/write key, see Coding of Access Rights for details. After execution of the function, a call
of Commit Transaction becomes necessary.

bool DESFire_ClearRecordFile(int CryptoEnv, int FileNo);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int FileNo Specify the ID of the file that shall be cleared.

Return: If the operation was successful, the return value is true, otherwise it is

false.

20.4.4 Commit Transaction

This function allows to validate all previous modifications on files with integrated backup mechanism such
as Backup Data Files, Value Files and Record Files. When a transaction has been finished, this is usually
the last called function; if this step was omitted, any changes would be lost if a different application is
selected or the transponder is removed from the RF-field.

bool DESFire_CommitTransaction
(
int CryptoEnv

)

Page 126 of 204

20 DESFire Specific Transponder Operations %EC

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

Return: If the operation was successful, the return value is true, otherwise it is

false.

20.4.5 Abort Transaction

This function allows to discard all previous modifications on files with integrated backup mechanism such
as Backup Data Files, Value Files and Record Files.

bool DESFire_AbortTransaction

(
int CryptoEnv

)

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

Return: If the operation was successful, the return value is true, otherwise it is

false.

Page 127 of 204

21 SAM AV1/AV2 ELATEC

21 SAM AV1/AV2

Before using one of the following functions, a NXP SAM AV1/AV2 card must have been inserted into one of
the available SAM slots. When powering up, TWN4 scans the slots for SAM cards, so a correctly inserted
SAM card is detected automatically for later use.

21.1 Host Authentication

This function shall be used to perform a mutual three pass authentication between host (reader) and the
SAM AV1/AV2 card. The function supports both 3DES and AES cryptography. Depending on security set-
tings of the SAM card, the authentication might be necessary in order to perform different security related
actions afterwards.

bool SAMAVx_AuthenticateHost
(
int CryptoEnv,
int KeyNo,
const bytex Key,
int KeyByteCount,
int KeyType
)3

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants.

int KeyNo Specify the key number that shall be used for authentication.

const bytex Key Specify the key that shall be used for authentication. For 3DES/AES, the
key must have a key length of 16 bytes.

int KeyByteCount Specify the key length of the key. Use one of the predefined constants
DESF_KEYLEN_3DES or DESF_KEYLEN_AES.

int KeyType Specify the type of the specified key. Use one of the predefined constants
DESF_KEYTYPE_3DES or DESF_KEYTYPE_AES. The authentication will be per-
formed according to the specified key type.

Return: If the operation was successful, the return value is true, otherwise it is

false.

21.2 Query Key Entry

Use this function to query information about a key entry on the SAM card.

Page 128 of 204

21 SAM AV1/Av2

ELATEC
oy

bool SAMAVx_GetKeyEntry(int KeyNo, TSAMAVxKeyEntryData* KeyEntryData);

Parameters:
int KeyNo Specify the key number that shall be used for authentication.
TSAMAVxKeyEntryDatax The key entry is returned by this parameter.
KeyEntryData
Return: If the operation was successful, the return value is true, otherwise it is
false.
Members Length | Description
(Bits)
byte VersionKeyA 8 This member holds the version of Key A.
byte VersionKeyB 8 This member holds the version of Key B.
byte VersionKeyC 8 This member holds the version of Key C.
uint32_t DF_AID 32 This member holds the associated DESFire AID.
byte DF_KeyNo 8 This member holds the associated DESFire key number.
byte KeyNoCEK 8 This member holds the key number of the change entry key.
byte KeyNoVCEK 8 This member holds the key version of the change entry key.
byte RefNoKUC 8 This member holds the number of the associated Key Usage
Counter.
uint16_t SET 16 This member holds the configuration settings of the key en-
try.

Table 21.1: Definition of TSAMAVxKeyEntryData

Page 129 of 204

22 1SO15693 Specific Transponder Operations %EC

22 1SO15693 Specific Transponder Operations

22.1 Generic 1ISO15693 Command

This function can be used for ISO15693 specific transponder operations which are not covered by high-
level system functions.

bool IS015693_GenericCommand
(
byte Flags,
byte Command,
byte* Data,
int* Length,
int BufferSize

)

Parameters:

byte Flags Specify the ISO15693 flags. Note: The flags regarding RF-communication
are set automatically, so by default one may assign 0x00 to this parameter.

byte Command Command code.

byte* Data This parameter works as Input/Output-buffer. All additional parameters
which are sent to the transponder are passed within this buffer. This buffer
is also used for data returned from the transponder.

int* Length This parameter works as Input/Output-variable. It holds the payload-length
of Data in the directions Reader— Tag and Tag— Reader.

int BufferSize This parameter holds the array-size of Data in bytes.

Return: If the operation was successful, the return value is true, otherwise it is

false.

22.2 Gather Tag Specific Information

22.2.1 Get System Information

This function returns more in-depth information of the tag. The function is available in two versions (Proto-
col Extension flag set or reset), as some tag types like ST 24LR16/64 require the Protocol Extension flag
to be set for proper operation.

bool IS015693_GetSystemInformation

(
TIS015693_SystemInfo* SystemInfo

)

Page 130 of 204

22 1SO15693 Specific Transponder Operations %EC

Members Length | Description
(Bits)
byte DSFID_Present 1 Set to 1 if DSFID is present
byte AFI_Present 1 Setto 1if AFI is present
byte 1 Set to 1 if BlockSize and Number_of_Blocks are present
VICC_Memory_Size_Present
byte IC_Reference_Present 1 Setto 1 if IC_Reference is present
byte Resl 4 Reserved for future use
byte UID[8] 64 Unique ldentifier
byte DSFID Data Storage Format Identifier
byte AFI Application Family Identifier
byte BlockSize Size of one data block in bytes
uint16_t Number_of_Blocks 16 Number of available blocks
byte IC_Reference 8 Meaning defined by the IC manufacturer

bool IS015693_GetSystemInformationExt

(

Table 22.1: Definition of TIS015693_SystemInfo

TIS015693_SystemInfo* SystemInfo

)

Parameters:

TIS015693_SystemInfox*

SystemInfo

Return:

Remark:

Pointer to the structure which receives the System Information.

If the operation was successful, the return value is true, otherwise it is
false.

As the GetSystemInformation command is no mandatory 1ISO15693 command, it is not im-

plemented in all tag types available on the market.

Page 131 of 204

22 1SO15693 Specific Transponder Operations %EC

Definition Value | Manufacturer | Tag Type
ISO15693_TAGTYPE_ICODESL2 0x00 | NXP ICode SL2

ISO15693 TAGTYPE_ICODESL2S 0x01 ICode SL2S
ISO15693_TAGTYPE_UNKNOWNNXP 0xOF Unknown
ISO15693_TAGTYPE_TAGITHFIPLUSINLAY | 0x10 | TI Tag-It HFI Plus Inlay
ISO15693 TAGTYPE_TAGITHFIPLUSCHIP 0x11 Tag-It HFI Plus Chip
ISO15693_TAGTYPE_TAGITHFISTD 0x12 Tag-It HFI Standard
ISO15693_TAGTYPE_TAGITHFIPRO 0x13 Tag-It HFI Pro
ISO15693 TAGTYPE_UNKNOWNTI Ox1F Unknown

ISO15693 TAGTYPE_UNKNOWNST 0x4F | ST Unknown

ISO15693 _TAGTYPE_SRF55V02P 0x50 | Infineon SRF55V02P
ISO15693_TAGTYPE_SRF55V10P 0x51 SRF55V10P
ISO15693_TAGTYPE_SRF55V02S 0x52 SRF55V02S
ISO15693_TAGTYPE_SRF55V10S 0x53 SRF55V10S
ISO15693 _TAGTYPE_UNKNOWNINFINEON | 0x5F Unknown

ISO15693 TAGTYPE_UNKNOWN OxFF | Unknown Unknown ISO15693

Table 22.2: Retrievable tag types from UID

22.2.2 Get Tag Type

The ISO15693 API incorporates two methods to determine the tag type, either by analysing the UID or the
System Information structure.

22.2.2.1 Get Tag Type From UID

This function can be used to determine the tag type of ISO15693 compliant transponders if only the UID
is available.

int IS015693_GetTagTypeFromUID
(

bytex UID
)
Parameters:
byte* UID This parameter holds the UID. Watch for the correct byte order; UID[0] shall
have the value 0xEOQ
Return: The return-value is the determined tag-type which is represented by one of

the constants in the table below.

Page 132 of 204

22 1SO15693 Specific Transponder Operations %EC

22.2.2.2 Get Tag Type From System Information

This function can be used to determine the tag type of ISO15693 compliant transponders if the System
Information is available.

int IS015693_GetTagTypeFromSystemInfo

(
TIS015693_SystemInfo* SystemInfo

)

Parameters:

TIS015693_SystemInfo*x Pointer to the structure which holds the System Information.
SystemInfo

Return: The return-value is the determined tag-type which is represented by one of
the constants in the table below.

Page 133 of 204

22 1SO15693 Specific Transponder Operations

ELATEC
oy

Definition Value | Manufacturer | Tag Type

ISO15693 TAGTYPE_ICODESL2 0x00 | NXP ICode SL2
ISO15693_TAGTYPE_ICODESL2S 0x01 ICode SL2S
ISO15693_TAGTYPE_UNKNOWNNXP O0xOF Unknown
ISO15693 TAGTYPE_TAGITHFIPLUSINLAY | 0x10 | TI Tag-It HFI Plus Inlay
ISO15693_TAGTYPE_TAGITHFIPLUSCHIP 0x11 Tag-It HFI Plus Chip
ISO15693_TAGTYPE_TAGITHFISTD 0x12 Tag-It HFI Standard
ISO15693 TAGTYPE_TAGITHFIPRO 0x13 Tag-It HFI Pro
ISO15693 TAGTYPE_UNKNOWNTI Ox1F Unknown

ISO15693 _TAGTYPE_MB89R118 0x20 | Fuiji MB89R118
ISO15693 TAGTYPE_MB89R119 0x21 MB89R119
ISO15693_TAGTYPE_MB89R112 0x22 MB89R112
ISO15693_TAGTYPE_UNKNOWNFUJI 0x2F Unknown
ISO15693_TAGTYPE_24LR16 0x30 | ST 24LR16
ISO15693_TAGTYPE_24LR64 0x31 241 R64

ISO15693 TAGTYPE_LRI1K 0x40 LRHK

ISO15693 TAGTYPE_LRI2K 0x41 LRI2K
ISO15693_TAGTYPE_LRIS2K 0x42 LRIS2K

ISO15693 TAGTYPE_LRIS64K 0x43 LRIS64K

ISO15693 TAGTYPE_UNKNOWNST 0x4F Unknown

ISO15693 _TAGTYPE_SRF55V02P 0x50 | Infineon SRF55V02P
ISO15693_TAGTYPE_SRF55V10P 0x51 SRF55V10P
ISO15693_TAGTYPE_SRF55V02S 0x52 SRF55V02S
ISO15693_TAGTYPE_SRF55V10S 0x53 SRF55V10S
ISO15693 _TAGTYPE_UNKNOWNINFINEON | 0x5F Unknown

ISO15693 TAGTYPE_UNKNOWN 0xFF | Unknown Unknown ISO15693

Table 22.3: Retrievable tag types from System Information

Page 134 of 204

22 1SO15693 Specific Transponder Operations

ELATEC
oy

22.3 Read/Write Data

22.3.1 Read Single Block

Read a single data block from the transponder. The function is available in two versions (Protocol Exten-
sion flag set or reset), as some tag types like ST 24LR16/64 require the Protocol Extension flag to be set

for proper operation.

bool IS015693_ReadSingleBlock
(
int BlockNumber,
bytex BlockData,
int* Length,
int BufferSize

)

bool IS015693_ReadSingleBlockExt

(

int BlockNumber,
byte* BlockData,
int* Length,

int BufferSize

)

Parameters:

int BlockNumber This parameter holds the number of the block to be read.

byte* BlockData This parameter holds the data which was read from the tag if the operation
was successful. Note that the block size varies between different tag types,
so the array size of BlockData should be set to a reasonable value.

int* Length This parameter holds the length of data which was read from the tag in bytes.

int BufferSize This parameter holds the array-size of BlockData in bytes.

Return: If the operation was successful, the return value is true, otherwise it is

false.

22.3.2 Write Single Block

Write to a single data block of the transponder. The function is available in two versions (Protocol Exten-
sion flag set or reset), as some tag types like ST 24LR16/64 require the Protocol Extension flag to be set

for proper operation.

bool IS015693_WriteSingleBlock
(
int BlockNumber,
const bytex BlockData,
int Length
)s

bool IS015693_WriteSingleBlockExt
(
int BlockNumber,
const bytex BlockData,

Page 135 of 204

22 1SO15693 Specific Transponder Operations ELATEC

RFID Systems

int Length
)s

Parameters:
int BlockNumber
const bytex BlockData

int Length

Return:

This parameter holds the number of the block to be written.
This parameter holds the data which shall be written to the tag.

This parameter holds the length of data which shall be written to the tag in
bytes.

If the operation was successful, the return value is true, otherwise it is
false.

Page 136 of 204

23 LEGIC-Specific Functions %EC

23 LEGIC-Specific Functions

This chapter describes functions for accessing LEGIC functionality.
Notes:
» These functions are available at TWN4 MultiTech LEGIC only.

» The style of functions has been changed due to additional support of SM4500: All functions are
starting with SM4X00 instead of SM4200. Old-style functions are supported via macros.

23.1 Direct Access of LEGIC Chip

TWN4 MultiTech LEGIC has a built-in LEGIC chip type SM4200 or SM4500. There are functions available
to directly communicate with this chipset.

Note:

Due to license restrictions, this documentation only mentions the functions itself. In order to use full
functionality of the LEGIC chip, appropriate documentation is required, which is available under NDA
(none-disclosure agreement) only.

23.1.1 SM4X00_GenericRaw

Send a command and receive the response from SM4X00. Command and response are expected to
include CRC. This function is intended to be used for end-to-end communication between SM4X00 and a
host.

bool SM4X00_GenericRaw(const byte *TXData,int TXDataLength,
byte *RXData,int *RXDatalength,
int MaxRXDataLength,int Timeout);

Parameters:

const byte *TXData Pointer to an array of bytes, which contains the command to be sent to
SM4X00.

int TXDatalLength Number of bytes to be sent to SM4X00.

byte *RXData Pointer to an array of bytes, which receives response from SM4X00

int *RXDataLength Pointer to an integer, which receives the actually read number of bytes.

int MaxRXDatalLength A value, which specifies the maximum number of bytes, which can be re-
ceived byte RXData, thus the buffer size.

int Timeout Maximum time, the function should wait for a response from SM4X00. This
value is specified in milliseconds.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 137 of 204

23 LEGIC-Specific Functions EL._NEC

23.1.2 SM4X00_Generic

Send a command and receive the response from SM4X00. This function is intended to be used by
standand-along applications.
bool SM4X00_Generic(const byte *TXData,int TXDatalLength,

byte *RXData,int *RXDatalLength,
int MaxRXDatalLength,int Timeout);

Parameters:

const byte *TXData Pointer to an array of bytes, which contains the command to be sent to
SM4X00. The command has to be specified W/O leading length byte and
W/O closing CRC value.

int TXDataLength Number of bytes contained in TXData.

byte *RXData Pointer to an array of bytes, which receives response from SM4X00. Re-
ceived data is W/O length byte and W/O CRC value.

int *RXDataLength Pointer to an integer, which receives length of the actually received payload.

int MaxRXDatalength A value, which specifies the maximum number of bytes, which can be re-
ceived byte RXData, thus the buffer size.

int Timeout Maximum time, the function should wait for a response from SM4X00. This
value is specified in milliseconds.

Return: If the operation was successful, the return value is true, otherwise it is
false.

23.1.3 SM4X00_StartBootloader

Start boot loader of SM4XO00.
bool SM4X00_StartBootloader(byte *TLV,int *TLVLength,int MaxTLVLength)

Parameters:

byte *TLV

int *TLVLength
int MaxTLVLength

Return: If the operation was successful, the return value is true, otherwise it is
false.

23.1.4 SM4X00_ EraseFlash

Erase flash of SM4X00.
bool SM4X00_EraseFlash(void)

Parameters: None.
Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 138 of 204

23 LEGIC-Specific Functions E#_NEC

23.1.5 SM4X00_ProgramBlock

Program one block of data into the flash of SM4X00.
bool SM4X00_ProgramBlock(byte *Data,bool *Done)

Parameters:

byte *Data Pointer to an array of bytes.

bool *Done Pointer to a boolean variable, which receives the status, if the last block was
flashed.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 139 of 204

24 iCLASS Specific Transponder Operations %EC

24 iCLASS Specific Transponder Operations

This chapter handles specific operations with iCLASS transponders. Prerequisites for this functionality are:

» The reader must be the TWN4 MultiTech/MultiTech Nano version, LEGIC is not supported.

An iCLASS SIO card must be inserted into one of the SAM slots.

The I-Option must be activated.

For iCLASS Seos support, the SIO card must have firmware 1.19 or higher.

24.1 Read PAC Bits

This function can be used to read the PAC (Physical Access Control) bits from an iCLASS transponder.
The transponder must have been selected before this function can be called.

bool ICLASS_GetPACBits
(
bytex PACBits,
int* PACBitCnt,
int MaxPACBytes
)3

Parameters:

bytex PACBits After successful completion of this function, the buffer referred by this pa-
rameter holds the PAC bits read from the transponder. Take care for ade-
quate dimensioning.

int* PACBitCnt After successful completion of this function, this parameter holds the number
of bits, the PAC contains.

int MaxPACBytes This parameter holds the maximum number of bytes which the buffer
PACBits can hold.

Return: If the operation was successful, the return value is true, otherwise it is

false.

Remark: There are transponders available, that have not been configured to deliver the PAC bits. In
this case, if an attempt is made to read these bits, the function returns false.

24.2 Example

The following example shows how to manually read the PAC from an iCLASS transponder using the built-in
system functions.

Page 140 of 204

24 iCLASS Specific Transponder Operations .EE!E-NEC

byte ID[8];
int TagType;
int IDBitCnt;

byte PACBits[8];
int PACBitCnt;

// Search only for iCLASS transponders
SetTagTypes (0, TAGMASK(HFTAG_HIDICLASS));

while (true)
{
// Search for transponders
if (!SearchTag(&TagType,&IDBitCnt,ID,sizeof (ID)))
continue;

// Read the PAC bits
if (!'ICLASS_GetPACBits(PACBits, &PACBitCnt, sizeof (PACBits)))
continue;

// Output what was read from the card
WriteHex (PACBits, PACBitCnt, (PACBitCnt+7)/8%2);
WriteChar(’\r’);

Page 141 of 204

25 FeliCa %EC

25 FeliCa

This chapter handles specific operations of contactless transponders that support FeliCa technology. Be-
fore one of the following functions can be used, the transponder must have been selected using the function
SearchTag(...).

25.1 Polling

Use this function to acquire a card by specifying a System Code. The transponder only answers if the
specified System Code matches to a system stored on the card. By specifying a wildcard (OxFF) for either
the upper or lower byte, a particular match of System Code can be achieved.

bool FeliCa_Poll(uintl6_t SystemCode, byte* IDm, byte* PMm) ;

Parameters:

uint16_t SystemCode Specify the two-byte System Code by this parameter.

byte* IDm The Manufacture ID is returned by this buffer. The function always returns 8
bytes.

byte* PMm The Manufacture Parameter is returned by this buffer. The function always
returns 8 bytes.

Return: If the operation was successful, the return value is true, otherwise it is

false.

25.2 Request System Code

Use this function to aquire a list of System Codes which are available on the card. This function does not
work with FeliCa Lite or FeliCa Plug ICs.

bool FeliCa_RequestSystemCode
(
int* NumberOfSystemCodes,
uint16_t* SystemCodelist,
int MaxNumberOfSystemCodes
)3

Page 142 of 204

ELATEC
oy

25 FeliCa
Parameters:
intx* This parameter holds the number of retrieved System Codes.
Number(0fSystemCodes
uint16_t* This parameter holds the list of System Codes which are available on the
SystemCodeList card.
int Specify the maximum number of System Codes, that can be stored in the
MaxNumberOfSystemCodes array SystemCodeList
Return: If the operation was successful, the return value is true, otherwise it is

false.

25.3 Request Service

Use this function to verify the existance of Area and Service Codes. The function returns the Key Version
of existing Area and System Codes. If the specified Area or System does not exist, the respective Key
Version is OxFFFF. This function does not work with FeliCa Lite or FeliCa Plug ICs.

bool FeliCa_RequestService
(
int NumberOfServices,
const uintl16_t* ServiceCodelist,
uint16_t* KeyVersionList

);

Parameters:

int NumberOfServices This parameter specifies the size of ServiceCodeList.

const uintl16_t* This array holds the list of Service Codes that shall be queried.

ServiceCodelList

uint16_t* The queried KeyVersions are returned by this array. It has the same size as

KeyVersionList ServiceCodeList, each KeyVersion is assigned to the order of appearance
of ServiceCodeList.

Return: If the operation was successful, the return value is true, otherwise it is
false.

25.4 Read Without Encryption

Use this function to read blocks of data from a authentication-not-required service. This function works
with all transponders supporting FeliCa technology.

bool FeliCa_ReadWithoutEncryption
(
int NumberOfServices,
const uintl16_t* ServiceCodelist,
int NumberOfBlocks,
const uintl16_t* BlockList,
bytex Data
);

Page 143 of 204

25 FeliCa %EC

Parameters:

int NumberOfServices This parameter specifies the size of ServiceCodeList.

const uint16_t* This array holds the list of Service Codes. Currently, one Service Code can

ServiceCodeList be specified.

int NumberOfBlocks This parameter specifies the number of blocks that shall be read. The cur-
rent implementation allows reading of four blocks at a time.

const uintl16_t* This array holds the list of blocks that shall be read.

BlockList

byte* Data Block data which was read from the card is returned by this buffer. A block

has always 16 bytes of data, so the buffer must be dimensioned depending
on the number of blocks that shall be read. The block data is returned in the
order of appearance of the values of BlockList.

Return: If the operation was successful, the return value is true, otherwise it is
false.

25.5 Write Without Encryption

Use this function to write blocks of data to a authentication-not-required service. This function works with
all transponders supporting FeliCa technology.

bool FeliCa_WriteWithoutEncryption
(
int NumberOfServices,
const uintl6_t* ServiceCodelist,
int NumberOfBlocks,
const uint16_t* BlockList,
const byte* Data
);

Parameters:

int NumberOfServices This parameter specifies the size of ServiceCodeList.

const uintl16_t* This array holds the list of Service Codes. Currently, one Service Code can

ServiceCodeList be specified.

int NumberOfBlocks This parameter specifies the number of blocks that shall be written. The
current implementation allows writing of four blocks at a time.

const uint16_t* This array holds the list of blocks that shall be written.

BlockList

const byte* Data Block data which shall be written to the card. A block has always 16 bytes of

data, so the buffer must hold Number0fBlocks multiplied by 16 bytes of data.
The block data must be arranged in the order of appearance of the values
of BlockList.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 144 of 204

25 FeliCa %EC

25.6 Transparent Data Exchange

This function can be used for transparent exchange of data between reader and FeliCa transponders, e.g.
for transponder commands which are not covered by the current implementation of the reader API.

bool FeliCa_TDX
(
bytex TXRX,
int TXByteCnt,
int* RXByteCnt,
int MaxRXByteCnt,
byte MaximumResponseTime,
byte NumberOfBlocks
)3

Parameters:

byte* TXRX This buffer holds the byte-string that shall be transmitted to the transponder.
The response of the transponder is also returned by this parameter. Take
care for adequate dimensioning.

int TXByteCnt This parameter holds the number of bytes that shall be transmitted to the
transponder.

int* RXByteCnt After successful completion of this function, this parameter holds the number
of bytes that the transponder response contains.

int MaxRXByteCnt This parameter holds the array-size of TXRX in bytes.

byte This parameter holds the parameter byte which shall be used for calculation

MaximumResponseTime of the Maximum Response Time according to the calculation formula.

byte NumberOfBlocks This parameter holds the value n which shall be used for calculation of the
Maximum Response Time according to the calculation formula.

Return: If the operation was successful, the return value is true, otherwise it is

false.

Page 145 of 204

26 Simple NDEF Exchange Protocol (SNEP) %EC

26 Simple NDEF Exchange Protocol (SNEP)

This chapter handles transmission of NDEF (NFC Data Exchange Format) messages between a TWN4
reader and a NFC enabled device using the Simple NDEF Exchange Protocol. For message exchange, a
NFC Peer-to-Peer connection must have been established.

The SNEP service provides both a logical In-Box and a logical Out-Box for receiving and transmitting mes-
sages. Each message box works as FIFO, which enables reader and host-software to exchange even large
messages as a stream of data. This functionality is also useful to reduce outbound buffering on host side.
Each message box can manage only one message at the same time, so message-queuing is currently not
supported. Large messages that do not fit into the internal FIFO must be transmitted fragmented, so the
sending side must break up the message into smaller parts that fit into the FIFO, the receiving side must
reassemble the parts as a consequence. When dealing with large messages, it might become necessary
to read data from the FIFO fast enough during a ongoing transmission in order to prevent any tailbacks.
Note: This functionality is only available on TWN4 MultiTech based on Core Module.

26.1 Initialize SNEP Service

Use this function for initialization and starting of the built-in SNEP service. The function should be called at
last once before issuing SearchTag() with TagType HFTAG_NFCP2P enabled. Depending on the implemen-
tation of the counterpart NFC device, there might be a delay until the SNEP service is activated on both
communication peers. This time usually ranges around 100 ms up to 500 ms.

bool SNEP_Init(void);

Parameters: None.

Return: If the SNEP service was successfully started, the return value is true, oth-
erwise it is false.

26.2 Get Connection State

Use this function to query the current connection state of the SNEP service. This can be used for checking
e.g. any loss of the physical NFC Peer-to-Peer connection.

int SNEP_GetConnectionState(void);

Page 146 of 204

26 Simple NDEF Exchange Protocol (SNEP)

ELATEC
oy

Parameters:

Return:

None.
SNEP_STATE_DEINIT: The SNEP service has not been started.

SNEP_STATE_SLEEP: The SNEP service has been started, but there is no
active connection.

SNEP_STATE_IDLE: The SNEP service is running, but there is currently no
active exchange of messages.

SNEP_STATE_CONNCLIENT: The SNEP service is running in client mode.
SNEP_STATE_CONNSERVER: The SNEP service is running in server mode.

26.3 Query Message FIFO

Use this function to get information of the respective message FIFO.

int SNEP_GetFragmentByteCount(int Direction);

Parameters:

int Direction

Return:

Specify the message box to be queried by this parameter. Valid values are
DIR_OUT (Out-Box) or DIR_IN (In-Box), use one of these predefined con-
stants.

If the In-Box is queried, the return value is the current number of bytes which
are available for reading from host side. If the Out-Box is queried, the return
value is the number of bytes that can be written to the FIFO.

Page 147 of 204

26 Simple NDEF Exchange Protocol (SNEP) EL‘_NEC

26.4 Transmit NDEF Message

This section handles transmission of NDEF messages. A typical communication flow for transmitting a
NDEF message looks like this:

Start SNEP service
|2

Establish NFC Peer-to-Peer connection

4

Begin Message (Setup total message length)

4

Send Message Fragment 1

\

Send Message Fragment 2
\
)

Send Message Fragment n

26.4.1 Begin Message

Use this function to setup the total message length. A message can reach up to 4 GBytes.

bool SNEP_BeginMessage(uint32_t MsgByteCnt);

Parameters:
uint32_t MsgByteCnt Specify the total message length by this parameter.
Return: If the operation was successful, the return value is true. If a previously set

up message has not been transmitted completely, the return value is false.

26.4.2 Send Message Fragment

Use this function to store a fragment of a message in the Out-Box FIFO. The message must be transmitted
completely in order to make the FIFO available for new outgoing messages.

bool SNEP_SendMessageFragment(const bytex MsgFrag, int FragByteCnt);

Parameters:

const byte* MsgFrag Specify the buffer that holds the message fragment by this parameter.

int FragByteCnt This parameter holds the length the message fragment.

Return: If the operation was successful, the return value is true, otherwise it is

false.

Page 148 of 204

26 Simple NDEF Exchange Protocol (SNEP) %EC

26.4.3 Example

The following example demonstrates transmission of a NDEF message from a TWN4 MultiTech reader to
another NFC device running SNEP:

const byte NDEF_Messagel[] = { /* Your NDEF message */ };

void TransmitNDEFMessage(void)

{

// Wait for SNEP service is running
unsigned long SNEPConnectionStartTime = GetSysTicks();
// SNEP service must be at least in IDLE state
while (SNEP_GetConnectionState() < SNEP_STATE_IDLE)
{
if (GetSysTicks() - SNEPConnectionStartTime > 500)
return;
¥
// Transmit NDEF message as long as a NFC connection is established
int FragmentOffset = O;
int NDEF_MessageByteCnt = sizeof (NDEF_Message);
while (true)
{
if (SNEP_GetConnectionState() < SNEP_STATE_IDLE)
return;
// Get available buffer size from operating system for message fragmenting
FragmentSize = SNEP_GetFragmentByteCount (DIR_QOUT) ;
if (FragmentSize > 0)
{
// Is this the first fragment?
if (FragmentOffset == 0)
{
// Yes, Setup message
if (!SNEP_BeginMessage (NDEF_MessageByteCnt))
return;
}
// Calculate fragment size
if (NDEF_MessageByteCnt - FragmentOffset <= FragmentSize)
FragmentSize = NDEF_MessageByteCnt - FragmentOffset;
// Send a fragment of the message
if (!SNEP_SendMessageFragment (4NDEF_Message [FragmentOffset], FragmentSize))
return;
FragmentOffset += FragmentSize;
}
// Was the message completely tansmitted?
if (FragmentOffset == NDEF_MessageByteCnt)
return;

#define MAXIDBYTES 10

byte ID[MAXIDBYTES];

int IDBitCnt;
int TagType;

int main(void)

{

// Enable NFC Peer-to-Peer mode

Page 149 of 204

26 Simple NDEF Exchange Protocol (SNEP) %EC

SetTagTypes (0, TAGMASK(HFTAG_NFCP2P));

// Start SNEP service
SNEP_Init();

while (true)

{
// Search a transponder
if (SearchTag(&TagType, &IDBitCnt, ID, sizeof(ID)))
{
if (TagType == HFTAG_NFCP2P)
{
// Transmit NDEF message
TransmitNDEFMessage () ;
}
}
}

Page 150 of 204

26 Simple NDEF Exchange Protocol (SNEP) %EC

26.5 Receive NDEF Message

This section handles reception of NDEF messages. A typical communication flow for receiving a NDEF
message looks like this:

Start SNEP service
|2

Establish NFC Peer-to-Peer connection

4

Test Message (Get total message length)

4

Receive Message Fragment 1

U

Receive Message Fragment 2
U
U

Receive Message Fragment n

26.5.1 Test Message

Use this function to test if there is a new message available in the In-Box. The function returns the total
length of the message. A message can reach up to 4 GBytes.

bool SNEP_TestMessage(uint32_t* MsgByteCnt) ;

Parameters:
uint32_t* MsgByteCnt The total message length is returned by this parameter.
Return: If a message is available, the return value is true, otherwise it is false.

26.5.2 Receive Message Fragment

Use this function to receive a fragment of a message stored in the In-Box FIFO. A message must be read
completely from the FIFO in order to make it available for new incoming messages.

bool SNEP_ReceiveMessageFragment(bytex MsgFrag, int FragByteCnt);

Parameters:

byte* MsgFrag Specify the buffer that holds the message fragment by this parameter.

int FragByteCnt This parameter holds the length the message fragment to be read.

Return: If the operation was successful, the return value is true, otherwise it is

false.

Page 151 of 204

26 Simple NDEF Exchange Protocol (SNEP) %EC

26.5.3 Example

The following example demonstrates reception of a NDEF message from another NFC device running
SNEP:

void ReceiveNDEFMessage (void)

{
// Wait for SNEP service is running
unsigned long SNEPConnectionStartTime = GetSysTicks();
// SNEP service must be at least in IDLE state
while (SNEP_GetConnectionState() < SNEP_STATE_IDLE)
{
if (GetSysTicks() - SNEPConnectionStartTime > 500)
return;
}
// Receive all NDEF messages as long as a NFC connection is established
while (true)
{
uint32_t MessageSize;
byte Message[4096] ;
// Wait for a incoming NDEF message or loss of connection
while (!SNEP_TestMessage(&MessageSize))
{
if (SNEP_GetConnectionState() < SNEP_STATE_IDLE)
return;
}
// A NDEF message was announced. Now read it.
int FragmentOffset, FragmentSize;
for (FragmentOffset = 0; FragmentOffset < MessageSize; FragmentOffset += FragmentSize)
{
// Wait, till fragment of the message arrives
do
{
if (SNEP_GetConnectionState() < SNEP_STATE_IDLE)
return;
FragmentSize = SNEP_GetFragmentByteCount (DIR_IN);
X
while (FragmentSize == 0);
SNEP_ReceiveMessageFragment (&Message [FragmentOffset] ,FragmentSize) ;
}
// We read the entire NDEF message
}
X

#define MAXIDBYTES 10

byte ID[MAXIDBYTES];
int IDBitCnt;
int TagType;

int main(void)

{
// Enable NFC Peer-to-Peer mode
SetTagTypes (0, TAGMASK(HFTAG_NFCP2P)) ;

// Start SNEP service
SNEP_Init();

Page 152 of 204

26 Simple NDEF Exchange Protocol (SNEP) %EC

while (true)

{
// Search a transponder
if (SearchTag(&TagType, &IDBitCnt, ID, sizeof (ID)))
{
if (TagType == HFTAG_NFCP2P)
{
// Receive NDEF message
ReceiveNDEFMessage () ;
DoSomething() ;
}
}
}

Page 153 of 204

27 BLE Functions ELATEC

27 BLE Functions

The reader TWN4 MultiTech 2 BLE supports LF / HF transponders and additionally BLE (Bluetooth Low
Energy). This allows to connect to all devices with the Bluetooth Standard 4.0 or greater: Android mobile
phones with Version 4.3 or greater, iPhones 4S, 5 or greater and PCs with Windows 8.1 / 10 and Bluetooth
hardware.

The App in the TWN4 MultiTech 2 BLE control the BLE module. There are commands for initialization,
setting connection parameters, do connection and f.e. reading / writing GATT data fields.

First of all initialize the BT Module. To make the extensive setting easier, simply call the function BLEInit
to set the wished configuration for starting the Module. The Mode parameter fills the environment variables
for the selected mode.

To set an own environment, use the functions BLEPresetConfig and BLEPresetUserData followed with
BLEInit (0).

After initialization call the function BLECheckEvent for checking events of Bluetooth. It's good to use a call
frequency of about 100ms. This would be fine. Slower calling slows the BLE functionality. Faster is not
necessary but no problem.

Environmet information are called by BLEGetAddress for the address of the reader, the address for the
connected device and the type of this address. Information of the firmware ask with BLEGetVersion and
at least connection environment with BLEGetEnvironment.

The GATT (Generic Attribute Profile) on the BLE module is reading with BLEGetGattServerAttribute-
Value and writing with BLESetGattServerAttributeValue.

To request the latest RSSI call the function BLERequestRssi if a connection has established. The RSSI
value is returned by the event BLE_EVENT_CONNECTION_RSSI. Closing a connection is thrown with
BLERequestEndpointClose. But also an automatic closing is carried out by the set timeout at initializa-
tion.

The BLE Module on the TWN4 MultiTech 2 BLE communicates serial with the main core. COM2 is re-
serverd for the communication with the BLE Modul and GPIO?7 is the reset of the BLE Module. So do not
use COM2 and GPIO?7 for other things on the hardware TWN4 MultiTech 2 BLE.

27.1 BLEPresetConfig

This function presets the individual configuration structure for the BLE module. The initialization command
BLEInit is necessary after this - optional also the BLEPresetUserData.

bool BLEPresetConfig
(
TBLEConfig* BLEConfig
)3

Page 154 of 204

27 BLE Functions EC

Parameters:
TBLEConfigx Reference to the structure that holds the BLE configuration parameters. See
the description of TBLEConfig for details.
Return: If the operation was successful, the return value is true, otherwise it is
false.
Members Length| Description
(Bits)
uint32_t ConnectTimeout 32 Timout of an established connection in milliseconds.
byte Power 8 TX power in 0.1dBm steps in the range 0 to 80 (0.0dBm to
8.0dBm).
byte BondableMode 8 Bonding:
0 = Off,
1=0n.
If additionaly Bit7=1, then self defined UserData (with func-
tion BLEPresetUserData(..)) are used.
uint16_t AdvInterval 16 Advertisement interval: values 20ms to 10240ms
byte ChannelMap 8 Advertisement Bluetooth channels:
1 = CH37,
2 = CH3s,
3 = CH37 + CH38,
4 = CH39,

5 = CH37 + CH39,
6 = CH38 + CH39,
7 = CH37 + CH38 + CH39.

byte DiscoverMode 8 Discoverable Modes for the LE (Low Energy) GAP (Generic
Access Profile):

0 = non discoverable,

1 = limited discoverable,

2 = general discoverable,

3 = braodcast,

4=user data.

byte ConnectMode 8 Connectable Modes for the LE (Low Energy) GAP (Generic
Access Profile):

0 = non connectable,

1 = directed connectable,

2 = undirected connectable,

3 = scannable / non connectable.

byte SecurityFlags 8 Security requirement bitmask:

Bit 0 = 0: Allow bonding without MITM protection,
Bit 0 = 1: Bonding requires MITM protection,

Bit 1 = 0: Allow encryption without bonding,

Bit 1 = 1: Encryption requires bonding,

Bit 2 to 7: Reserved, Default value: 0x00.

Page 155 of 204

27 BLE Functions

ELATEC

RFID Systems

byte IOCapabilities 8 Security Management related 1/O capabilities:
0 = display only,
1 = display yes/no,
2 = keyboard only,
3 = no input / no output,
4 = keyboard / display
uint32_t Passkey 32 Passkey: If security is configured, the application needs to

display or ask user to enter a passkey during the bonding
process. See:

BLE_EVENT_SM_PASSKEY_DISPLAY or
BLE_EVENT_SM_PASSKEY_REQUEST.

Table 27.1: Definition of TBLEConfig

27.2 BLEPresetUserData

F.e. the Apple company has introduced iBeacons to broadcast their identifier to nearby portable electronic
devices. If you discover an iBeacon or common a Beacon, you get his UUID, Major and Minor values. With
the TWN4 MultiTech 2 BLE, you can configure the reader to be a Beacon.

bool BLEPresetUserData

(
byte ScanResp,

const bytex UserData,
int UserDatalLength

)

Parameters:

byte ScanResp

const bytex UserData

int UserDatalength

Selection the type showing user data:
0 = advertise packets,
1 = scan packets.

Reference to the byte buffer that holds the UserData parameters. See the
description of UserData for details.

Length of the UserData. Maximum data length is 30 Bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.
Members Length| Value | Description
(Bits) | (f.e.)
UserDatal0] 8 0x02 | Length of the Flags field - 2 bytes.
UserDatal1] 8 0x01 | Length of the Flags field - high byte.
UserDatal[2] 8 0x06 | Length of the Flags field - low byte.
UserDatal[3] 8 0x1A | Length of the Manufacturer Data field - 26 bytes.
UserDatal4] 8 OxFF | Data type / Manufacturer specific data / Type of
the Manufacturer Data field.

Page 156 of 204

27 BLE Functions ELATEC

UserDatal[5] 8 0x4C | Manufacturer data - high byte, Company ID field -
0x4C00 = Apple’s Bluetooth SIG ID.

UserDatal6] 8 0x00 | Manufacturer data - low byte.

UserDatal7] 8 0x02 | Manufacturer data - high byte, Beacon Type field
- 0x0215 = iBeacon.

UserData[8] 8 0x15 | Manufacturer data - low byte.

UserDatal[9] 8 OxE2 | UUID E2C56DB5-DFFB-48D2-B060-
DOF5A71096-E0 (Apple AirLocate Service)

UserDatal[10] 8 0xC5

UserData[11] 8 0x6D

UserDatal[12] 8 0xB5

UserData[13] 8 0xDF

UserDatal[14] 8 0xFB

UserDatal[15] 8 0x48

UserDatal[16] 8 0xD2

UserDatal17] 8 0xB0

UserDatal18] 8 0x60

UserDatal19] 8 0xDO0

UserDatal[20] 8 0xF5

UserDatal[21] 8 O0xA7

UserDatal[22] 8 0x10

UserDatal[23] 8 0x96

UserDatal[24] 8 0xEOQ

UserDatal[25] 8 0x00 | The Major high value, which is used to group re-
lated beacons.

UserDatal[26] 8 0x00 | The Major low value.

UserDatal[27] 8 0x00 | The Minor high value, which is used to specify in-
dividual beacon within a group.

UserData[28] 8 0x00 | The Minor low value.

UserDatal[29] 8 0xC3 | Signal power (calibrated RSSI) - See the iBeacon
specification for measurement guidelines.

Table 27.2: Definition of UserData
27.3 BLElInit

This function initialize the Bluetooth BLE Module on the reader. Different modes are possible: The
custom mode makes individual operating modes possible - pre configured with BLEPresetConfig and
BLEPresetUserData. The other modes are predefined modes for advertisment and Beacon.

bool BLEInit

Page 157 of 204

27 BLE Functions

ELATEC

RFID Systems

(
int Mode

)

Parameters:

int Mode

Return:

Specify the initialization mode. See the definition of Mode for meaning of
each member.

If the operation was successful, the return value is true, otherwise it is
false.

BLE_MODE_CUSTOM 0 BLE Custom mode for previously defined configuration with
functions BLEPresetConfig and BLEPresetUserData.

BLE_MODE_ADVERTISEMENT 1 Easy BLE advertisement mode with no encryption and
bonding.

BLE_MODE_BEACON

2 BLE Beacon mode for mobile devices.

Table 27.3: Definition of Mode

27.4 BLECheckEvent

This function returns the actual event of the BLE module. The returned event tells different status mes-
sages of the Bluetooth environment either information or user action.

int BLECheckEvent
(

void

)

Parameters:

Return:

None.

Specify the event. See the definition in the table below

BLE_EVENT_NONE

0x00 | No event.

BLE_EVENT_ENDPOINT_CLOSING 0x21 | This event indicates that an endpoint is

closing or that the remote end has termi-
nated the connection.

BLE_EVENT_ENDPOINT_DATA 0x22 | This event indicates incoming data from an
endpoint.

BLE_EVENT_ENDPOINT_STATUS 0x23 | This event indicates an endpoint’s status.

BLE_EVENT_ENDPOINT_SYNTAX_ERROR 0x24 | This event indicates that a protocol error to
the BLE module was detected.

BLE_EVENT_GATT_SERVER_ATTRIBUTE 0x51 | This event indicates that the value of an at-

_VALUE tribute in the local GATT database has been
changed by a remote GATT client.

BLE_EVENT_CONNECTION_CLOSED 0x71 | This event indicates that a connection was
closed.

Page 158 of 204

27 BLE Functions EC

BLE_EVENT_CONNECTION_OPENED 0x72 | This event indicates that a new connection
was opened, whether the devices are al-
ready bonded, and what is the role of the
Bluetooth device (Slave or Master). An
open connection can be closed with the
command BLERequestEndpointClose.

BLE_EVENT_CONNECTION_PARAMETERS 0x73 | This event is triggered whenever the con-
nection parameters are changed and at any
time a connection is established.

BLE_EVENT_CONNECTION_RSSI 0x74 | This event s triggered when an
BLERequestRssi command has com-
pleted.

BLE_EVENT_SM_BONDED 0x91 | This event is triggered after the pairing or
bonding procedure has been successfully
completed.

BLE_EVENT_SM_BONDING_FAILED 0x92 | This event is triggered if the pairing or bond-
ing procedure has failed.

BLE_EVENT_SM_PASSKEY_DISPLAY 0x95 | This event indicates a request to display the
passkey to the user.

BLE_EVENT_SM_PASSKEY_REQUEST 0x96 | This eventindicates a request for the user to
enter the passkey displayed on the remote
device.

BLE_EVENT_SYSTEM_BOOT 0xA2 | This event indicates the device has started

and the radio is ready. This even carries the
firmware build number and other SW and
HW identification codes saved in the func-
tion BLEGetVersion.

Table 27.4: Definition of Event

27.5 BLEGetAddress

This function returns the device address from the BLE module, the remote address from the connected
device and the address type of the remote address.

bool BLEGetAddress
(
byte* DeviceAddress,
byte* RemoteAddress,
byte* Type
)3

Page 159 of 204

27 BLE Functions

ELATEC
oy

Parameters:

byte* DeviceAddress

byte* RemoteAddress

bytex Type

Return:

The device address of the BLE module in 6 bytes hex is returned by this
parameter.

The remote address of the connected device in 6 bytes hex is returned, if
the remote device is successfull connected. For additional information of
the remote address see the Type parameter.

The type of the remote address is returned by this parameter. Possible
values are:

0 = public address,

1 = random address,

2 = public identity address resolved by stack,

3 = random identity address resolved by stack,

4 = Classic Bluetooth address.

If the operation was successful, the return value is true, otherwise it is
false.

27.6 BLEGetVersion

This function returns on the one hand the version string of the BLE module firmware in ASCII format and
on the other the boot string of the BLE hardware.

bool BLEGetVersion
(
bytex HWVersion,
bytex BootString
)3

Parameters:

bytex HWVersion

byte* BootString

Return:

The firmware version string (16 bytes) in ASCII code is returned by this pa-
rameter. Example: "V1.03,14.11.2016"

The boot string of the BLE hardware is returned. The information is binary
coded in 12 bytes with the following information:

Byte 0 - 1: Major release version,

Byte 2 - 3: Minor release version,

Byte 4 - 5: Patch release number,

Byte 6 - 7: Build number,

Byte 8 - 9: Bootloader version,

Byte 10 - 11: Hardware type.

If the operation was successful, the return value is true, otherwise it is
returned false.

27.7 BLEGetEnvironment

This function can be used to ask for connection enviroment of a connected device.

bool BLEGetEnvironment
(

bytex DeviceRole,

Page 160 of 204

27 BLE Functions

ELATEC
oy

byte* SecurityMode,

byte* Rssi
);

Parameters:

byte*x DeviceRole

byte*x SecurityMode

Return:

The device role of the connection is returned:
0 = Slave,
1 = Master.

The security mode of the established connection is returned. Possible val-
ues are:

0 = No security (mode 1 level1)

1 = Unauthenticated pairing with encryption (mode 1 level 2)

2 = Authenticated pairing with encryption (mode 1 level 3).

If the operation was successful, the return value is true, otherwise it is
returned false.

27.8 BLEGetGattServerAttributeValue

This function returns the data of a GATT attribute handle.

bool BLEGetGattServerAttributeValue

(

int AttrHandle,

byte *Data,
int *Len,
int MaxLen

)

Parameters:

int AttrHandle

byte *Data
int *Len

int MaxLen

Return:

Specify the attribute handle number of the GATT who is selected to read.
See the GATT table for possible values.

The read data of the given attribute handle is returned by this parameter.
This parameter holds the length of data which was read from the GATT.

Maximum number of characters, the specified byte array can receive exclud-
ing the O-termination.

If the operation was successful, the return value is true, otherwise it is
returned false.

27.9 BLESetGattServerAttributeValue

This function writes data to an attribute handle. Notice that the GATT attribute must be writeable.

bool BLESetGattServerAttributeValue

(

int AttrHandle,

int Offset,

const byte *Data,

int Len

)

Page 161 of 204

27 BLE Functions ELATEC

Parameters:

int AttrHandle Specify the attribute handle number of the GATT for writing data. For possi-
ble values see the GATT table.

int Offset Specify the starting address for writing to data. The valid range of this pa-
rameter is 0 to Len-1.

byte *Data The write data buffer to the attribute handle with the specifyed offset.

int Len This parameter holds the length of data which shall be written to the GATT.

Return: If the operation was successful, the return value is true, otherwise it is

returned false.

27.10 BLERequestRssi

This function calls a request for the actual RSSI. The value of the RSSl is returned by an event BLE_EVENT
_CONNECTION_RSSI with function BLECheckEvent. The function makes only sense if there is a established
connection with a remote device.

bool BLERequestRssi

(

void

)

Parameters: None.

Return: If the operation was successful, the return value is true, otherwise it is
returned false.

27.11 BLERequestEndpointClose

This function closes a connection with the remote device. If the connection is closed, the function BLECheckEvent
returns the event BLE_EVENT_CONNECTION_CLOSED for successfull closing.

bool BLERequestEndpointClose
(

void

)

Parameters: None.

Return: If the operation was successful, the return value is true, otherwise it is
returned false.

Page 162 of 204

28 Contact Card Operations ELATEC

28 Contact Card Operations

28.1 Microprocessor Cards

This chapter handles the usage of ISO7816 compliant Integrated Circuit Cards such as ID-1 or SAM
(Secure Access Module) cards. The TWN4 ISO7816 API offers different system functions for covering
different imaginable scenarios. A typical communication flow with contact cards looks like this:

Query card slot status

4

Activate card

4

PPS and set communication parameters

U
Exchange APDUs

4

Deactivate card

28.1.1 Query Card Slot Status

This function shall be used to query information of the physical card slot status, e.g. to find out if a card is
inserted or not. The function returns the slot status in CCID compliant style, this means it return information
about slot status, error information and clock status. The internal state of the card is not changed. Please
note, depending on the used hardware (TWN4 Desktop or TWN4 SmartCard) the amount of retrievable
information differs.

bool IS07816_GetSlotStatus(int Channel, TIS07816SlotStatus* SlotStatus);

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

TIS07816SlotStatus* The card slot status is returned by this parameter. See the definition of

SlotStatus TIS07816SlotStatus for meaning of each member.

Return: If the operation was successful, the return value is true, otherwise it is

false.

Page 163 of 204

28 Contact Card Operations

ELATEC
oy

Members Length| Description
(Bits)
TIS07816StatusReg bStatus 8 Slot status register compliant to CCID. See the definition of

TIS07816StatusReg for meaning of the different bit fields.

byte bError

Error code compliant to CCID.

byte bClockStatus

Clock status information compliant to CCID. Possible values
are:

IS07816_CLOCKSTATUS_RUNNING,
I1S07816_CLOCKSTATUS_CLKSTPL,
IS07816_CLOCKSTATUS_CLKSTPH,
IS07816_CLOCKSTATUS_CLKSTPU.

Table 28.1: Definition of TIS07816S1otStatus

Members Length | Description
(Bits)
byte bmICCStatus 2 Physical status of the card slot. Possi-
ble values are: 1S07816_ICCPRESENTANDACTIVE,
1S07816_ICCPRESENTANDINACTIVE and

IS07816_NOICCPRESENT.

byte bmRFU

These bits are reserved for future use.

byte bmCommandStatus

Command status information compliant to CCID.

Table 28.2: Definition of TIS07816StatusReg

28.1.2 Card Activation

This function shall be used to activate and initialize communication with the card inserted in one of the
slots connected to the TWN4 reader. All communication parameters are reset to default. Depending on
the hardware platform, the reader shows different behaviour regarding reset-handling of the card: On
TWN4 Desktop, calling this function always leads to a warm reset, on TWN4 SmartCard, the first call
performs a cold reset and any subsequent function call leads to a warm reset until the card is deactivated.
The result of the entire operation is the receipt of the Answer To Reset (ATR) from the card. Based on
the content of the ATR, the user may decide how to further proceed with the card. Note that selection of
voltage level is only available for TWN4 SmartCard.

bool IS07816_IccPower(On
(
int Channel,
bytex ATR,
int* ATRByteCnt,
int MaxATRByteCnt,
byte bPowerSelect,
TISO07816StatusReg* bStatus,
byte* bError
)3

Page 164 of 204

28 Contact Card Operations ELATEC

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

bytex ATR After successful completion of this function, the buffer referred by this pa-
rameter holds the ATR which was read from the card. Take care for ade-
quate dimensioning.

int* ATRByteCnt After successful completion of this function, this parameter holds the number
of bytes, the ATR contains.

int MaxATRByteCnt This parameter holds the array-size of ATR in bytes.

byte bPowerSelect Specify the operating voltage level which shall be used for the card.
Valid values are IS07816_POWERSELECT_AUTO, IS07816_POWERSELECT_5V,
1S07816_POWERSELECT_3V, or IS07816_POWERSELECT_1V8, use one of these
predefined constants.

TISO7816StatusReg* The CCID compliant slot status register is returned by this parameter. See

bStatus the definition of TIS07816StatusReg for meaning of the different bit fields.

byte* bError The CCID compliant error code is returned by this parameter.

Return: If the operation was successful, the return value is true, otherwise it is

false.

28.1.3 Card Deactivation

This function shall be used to deactivate and power off the card. When this function was called on TWN4
SmartCard reader, a subsequent call of IccPowerOn() leads to a cold reset of the card.

bool IS07816_IccPowerOff(int Channel, TIS07816SlotStatus* SlotStatus);

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

TIS07816SlotStatus* The card slot status is returned by this parameter. See the definition of

SlotStatus TIS07816SlotStatus for meaning of each member.

Return: If the operation was successful, the return value is true, otherwise it is

false.

28.1.4 Set Communication Settings

This function shall be used to assign new communication settings to the respective card slot. After call-
ing this function, the communication parameters which have been negotiated with the card during Pro-
tocol And Parameter Selection (PPS) become valid. For issuing a PPS, please refer to the function
IS07816_Transceive. Specific communication parameters must be obtained from the ATR, for detailed
information refer to standard ISO7816-3.

bool IS07816_SetCommSettings
(

int Channel,

Page 165 of 204

28 Contact Card Operations

ELATEC
oy

const TISO7816CommSettings* CommSettings

)

Parameters:

int Channel

Specify a communication channel by this parameter.

Valid values are

CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

const The new communication settings are passed by this parameter. See the

TIS07816CommSettings* definition of TIS07816CommSettings for meaning of each member.

CommSettings

Return: If the operation was successful, the return value is true, otherwise it is

false.
Members Length | Description
(Bits)

byte Protocol 8 Specify the protocol to be used. Possible values are:
1S07816_PROTOCOL_TO and IS07816_PROTOCOL_TO.

byte Freq 8 Specify the clock frequency which shall be ap-
plied to the card. Chose one of the pre-
defined constants 1S07816_FREQUENCY_1000000,
IS07816_FREQUENCY_1250000, IS07816_FREQUENCY_1875000,
1S07816_FREQUENCY_2500000, IS07816_FREQUENCY_3750000,
IS07816_FREQUENCY_5000000, IS07816_FREQUENCY_7500000
or I1807816_FREQUENCY_15000000.

uintl6_t F 16 Specify a non-1SO value for F.

uint16_t D 16 Specify a non-1SO value for D.

union TProtocolData 56 See definition of TProtocolData for details.

ProtocolData

Table 28.3: Definition of TIS07816CommSettings
Members Length | Description
(Bits)
TProtocolDataTO TO 40 See definition of TProtocolDataT0 for details.
TProtocolDataTl T1 56 See definition of TProtocolDataT1 for details.

Table 28.4: Definition of TProtocolData

Page 166 of 204

28 Contact Card Operations

ELATEC
oy

Members Length| Description
(Bits)

byte bmFindexDindex 8 Bit 7-4: FI, Index into table 7 of ISO/IEC 7816-3:2006 select-
ing a clock rate conversion factor. Bit 3-0: DI, Index into table
8 of ISO/IEC 7816-3:2006 selecting a baud rate conversion
factor. This value shall be obtained from TA1 of the ATR.

byte bmTCCKSTO 8 This value shall be set to 00h.

byte bGuardTimeTO Extra Guardtime between two characters. Add 0 to 254 etu
to the normal guardtime of 12 etu. FFh is the same as 00h.
This value shall be obtained from TC1 of the ATR.

byte bWaitingIntegerTO 8 Waiting time between transmission of a command and re-
ception of the response. This value is specified in TC2 of the
ATR. If TC2 is not present, the default value is 10.

byte bClockStop 8 This value shall be set to 00h.

Table 28.5: Definition of TProtocolDataT0
Members Length | Description
(Bits)

byte bmFindexDindex 8 Bit 7-4: FI, Index into table 7 of ISO/IEC 7816-3:2006 select-
ing a clock rate conversion factor. Bit 3-0: DI, Index into table
8 of ISO/IEC 7816-3:2006 selecting a baud rate conversion
factor. This value shall be obtained from TA1 of the ATR.

byte bmTCCKST1 This value shall be set to 00h.

byte bGuardTimeT1 8 Extra Guardtime (0 to 254 etu between two characters). If
value is FFh, then guardtime is reduced by 1 etu. This value
shall be obtained from TC1 of the ATR.

byte bWaitingIntegerT1 8 Bit 7-4: BWI, values 0-9 valid. Bit 3-0: CWI, values 0-Fh
valid. This value is specified in the first TB for T=1 in the
ATR.

byte bClockStop 8 This value shall be set to 00h.

byte BIFSC Size of negotiated IFSC in bytes. This value is specified in
the first TA for T=1 in the ATR.

byte bNadValue 8 This value shall be set to 00h.

Table 28.6: Definition of TProtocolDataT1

Page 167 of 204

28 Contact Card Operations ELATEC

28.1.5 Transparent Data Transmission

This function shall be used for byte-wise communication with the card.

bool IS07816_Transceive
(
int Channel,
const bytex TX,
int LenTX,
bytex RX,
int* LenRX,
int MaxRXByteCnt,
TIS07816StatusReg* bStatus,
byte* bError
);

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

const bytex TX This buffer holds the data which shall be transmitted to the card.

int LenTX This parameter specifies the data-length in bytes which shall be transmitted
to the card.

byte* RX This buffer holds the data which was read from the card. Take care for
adequate dimensioning.

int* LenRX After successful completion of this function, this parameter holds the number
of bytes read from the card.

int MaxRXByteCnt This parameter holds the array-size of RX in bytes.

TISO7816StatusReg* The CCID compliant slot status register is returned by this parameter. See

bStatus the definition of TIS07816StatusReg for meaning of the different bit fields.

byte* bError The CCID compliant error code is returned by this parameter.

Return: If the operation was successful, the return value is true, otherwise it is

false.

28.1.6 Exchange Of APDUs

This function shall be used for APDU exchange based on T=0/T=1 protocol according to ISO7816-3.

bool IS07816_ExchangeAPDU
(
int Channel,
const TISO7816_ProtocolHeader* Header,
const bytex TXData,
int TXByteCnt,
byte*x RXData,
int* RXByteCnt,
int MaxRXByteCnt,
uint16_t* StatusWord
);

Page 168 of 204

28 Contact Card Operations

ELATEC
oy

Parameters:

int Channel

const

Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

This parameter holds basic APDU information.

TIS07816_ProtocolHeader

*Header

const bytex TXData
int TXByteCnt
byte* RXData

int* RXByteCnt

int MaxRXByteCnt

uint16_t* StatusWord

This buffer holds the data field of the APDU.
This parameter specifies the data-length in bytes of the data-field.
This buffer holds the data-field of the received APDU.

After successful completion of this function, this parameters holds the data-
field size of the received APDU.

This parameter holds the array-size of RXData in bytes.
This parameter holds the status word received from the card.

Return: If the operation was successful, the return value is true, otherwise it is
false.
Members Length | Description
(Bits)
byte CLA 8 This member holds the CLA-value.
byte INS 8 This member holds the INS-code.
byte P1 8 This member holds the parameter P1.
byte P2 8 This member holds the parameter P2.

uintl6_t Lc

16 This member holds Lc which defines the size of the following
data-field.

uintl6_t Le

16 This member holds Le which defines the maximum expected
size of the response data-field.

struct

TIS07816_ProtocolHeaderFlags

8 This member holds additional APDU information.

Flags
Table 28.7: Definition of TIS07816_ProtocolHeader
Members Length | Description
(Bits)
byte LePresent 1 If set to true, Le is transmitted.
byte ExtendedAPDU 1 If set to true, this APDU is sent as Extended APDU.
byte RFU 6 Reserved for future use.

Table 28.8: Definition of TIS07816_ProtocolHeaderFlags

Page 169 of 204

28 Contact Card Operations

ELATEC
oy

28.1.7 Examples
28.1.7.1 PPS Example

The following example shows how to make a PPS with an ISO7816 card.

bool IS07816_PPS(int Channel, byte Protocol, bytex bmFindexDindex)
{

byte Cmd[4];

byte Res[4];

int TxByteCnt;

int RxByteCnt;

TISO07816StatusReg bStatus;

byte bError;

// PPS always starts with OxFF

Cmd[0] = OxFF;

// The second byte stores the desired protocol
Cmd[1] = Protocol & 0xOF;

// Is bmFindexDindex present?

if (bmFindexDindex != NULL)

{
// Yes, prepare the command accordingly
Cmd[1] |= 0x10;
Cmd[2] = *bmFindexDindex;
// Calculate the BCC over all command bytes
Cmd[3] = Cmd[0] ~ Cmd[1] ~ Cmd[2];
TxByteCnt = 4;

}

else

{
// FindexDindex is not present, calculate only BCC
Cmd[2] = Cmd[0] ~ Cmd[1];
TxByteCnt = 3;

}

// Send PPS request to the card, get response
if (1IS07816_Transceive(Channel, Cmd, TxByteCnt, Res,
&RxByteCnt, sizeof (Res), &bStatus, &bError))
return false;
// We expect the card to echo the request in its response
if (RxByteCnt != TxByteCnt)
return false;
return memcmp(Cmd, Res, RxByteCnt) == 0;

28.1.7.2 Communication Example

The following example shows how to prepare a 1ISO7816 card for communication at T=1 protocol and

exchange APDUs.
byte ATR[32];
int ATRByteCnt;

TISO07816SlotStatus SlotStatus;
TProtocolDataTl ProtocolDataTl;

Page 170 of 204

28 Contact Card Operations

ELATEC
oy

TIS07816_ProtocolHeader Header;
byte TXData[128];

byte RXDatal[128];

int RXByteCnt;

uintl6_t SW12;

// We want to use T=1 protocol with the following non-default values

ProtocolDataTl.bmFindexDindex = 0x98;
ProtocolDataT1.bmTCCKST1 = 0;
ProtocolDataTl.bGuardTimeT1 = OxFF;
ProtocolDataTl.bmWaitingIntegersTl = 0x55;
ProtocolDataTl.bClockStop = 0;
ProtocolDataT1.bIFSC = OxFE;
ProtocolDataTl.bNadValue = 0x00;

MainLoop:
while (true)
{
// Is a card inserted in CHANNEL_SC17?

if (1'IS07816_GetSlotStatus (CHANNEL_SC1, &SlotStatus))

goto MainLoop;
// Card slot empty?

if (SlotStatus.bStatus.bmICCStatus == IS07816_NOICCPRESENT)

goto MainLoop;
// Perform activation of the card and receive ATR
if (1I807816_IccPowerOn
(
CHANNEL_SC1,
ATR,
&ATRByteCnt,
sizeof (ATR),
IS07816_POWERSELECT_5V,
&SlotStatus.bStatus,
&SlotStatus.bError
))
goto MainLoop;
// We expect the card to be present and active

if (SlotStatus.bStatus.bmICCStatus != IS07816_ICCPRESENTANDACTIVE)

goto MainLoop;
// Perform PPS for T=1 protocol
if (!'IS07816_PPS(CHANNEL_SC1, IS07816_PROTOCOL_T1,
&ProtocolDataTl.bmFindexDindex))
goto MainLoop;

// Let’s prepare our APDU. We want to select the Masterfile (MF)

// of a PKI card by its SFI (0x3F00).
Header.CLA = 0x00;

Header.INS = 0xA4;

Header.P1 = 0x00;

Header.P2 = 0x00;

Header.Lc = 0x0002;

Header.Le = 0x0000;
Header.Flags.LePresent = true;
Header.Flags.ExtendedAPDU = false;
TXData[0] = 0x3F;

TXData[1] = 0x00;

Page 171 of 204

ELATEC

28 Contact Card Operations

// Exchange the APDU
if (1IS07816_ExchangeAPDU(CHANNEL_SC1, &Header, TXData, Header.Lc,
RXData, &RXByteCnt, sizeof (RXData), &SW12))

goto MainLoop;

// Check status word of the received APDU

if (SW12 == 0x9000)

{
// Further APDUs may follow...
DoSomething() ;

28.2 Memory Cards

This chapter shows how to use TWN4 with contact based memory cards such as SLE44xx or compatible
cards. In order to query the card slot insertion state, the function 1S07816_GetSlotStatus can be used.

28.2.1 Get ATR

Use this function to retrieve the ATR (Answer To Reset) from an inserted card.

bool SLE_GetATR(int Channel, bytex ATR);

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

byte* ATR The card’s ATR is returned by this buffer. The function always returns 4
bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

28.2.2 Read Main Memory

Use this function to read data from the main memory.

bool SLE_ReadMainMemory(int Channel, int Address, byte* Data, int ByteCnt);

Page 172 of 204

28 Contact Card Operations ELATEC

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

int Address Specify the start address in memory for reading.

byte* Data This buffer holds the data read from the card. Take care for proper dimen-
sioning.

int ByteCnt Specify the number of bytes to be read.

Return: If the operation was successful, the return value is true, otherwise it is
false.

28.2.3 Write Main Memory
Use this function to write one byte of data to the main memory.

bool SLE_UpdateMainMemory(int Channel, int Address, byte Value);

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

int Address Specify the address in memory to be written.

byte Value Specify the data byte to be written.

Return: If the operation was successful, the return value is true, otherwise it is

false.

28.2.4 Read Security Memory

Use this function to read out the four bytes of Security Memory.

bool SLE_ReadSecurityMemory(int Channel, byte* SecMemData);

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

byte* SecMemData This buffer holds the Security Memory data read from the card. The function
always returns 4 bytes.

Return: If the operation was successful, the return value is true, otherwise it is

false.

28.2.5 Write Security Memory

Use this function to write one byte of data to the Security Memory.

Page 173 of 204

28 Contact Card Operations ELATEC

bool SLE_UpdateSecurityMemory(int Channel, int Address, byte SecMemData);

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

int Address Specify the address in Security Memory to be written.

byte SecMemData Specify the data byte to be written.

Return: If the operation was successful, the return value is true, otherwise it is

false.

28.2.6 Read Protection Memory

Use this function to read out the four bytes of Protection Memory.

bool SLE_ReadProtectionMemory(int Channel, byte* ProtMemData) ;

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

byte* ProtMemData This buffer holds the Protection Memory data read from the card. The func-
tion always returns 4 bytes.

Return: If the operation was successful, the return value is true, otherwise it is

false.

28.2.7 Write Protection Memory

Use this function to write one byte of data to the Protection Memory.

bool SLE_WriteProtectionMemory(int Channel, int Address, byte ProtMemData) ;

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

int Address Specify the address in Protection Memory to be written.

byte ProtMemData Specify the data byte to be written.

Return: If the operation was successful, the return value is true, otherwise it is

false.

28.2.8 Compare Verification Data

Use this function to transmit one byte of verification input to the card.

Page 174 of 204

ELATEC

28 Contact Card Operations

bool SLE_CompareVerificationData(int Channel, int Address, byte VerificationData);

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

int Address Specify the address of verification data byte.

byte VerificationData Specify the verification data byte to be transfered to the card.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 175 of 204

29 Cryptographic Operations ELATEC

29 Cryptographic Operations

The cryptographic APl incorporates methods for encryption/decryption of data, these are Triple-DES (Data
Encryption Standard) or AES (Advanced Encryption Standard). TDES is available in two versions that
support different key-lengths: 128 bit (TDES2K) and 192 bit (TDES3K).

The implementation of TDES is based on FIPS PUB 46-3. The method always operates on entire data
blocks of 8 bytes. The DES algorithm is passed three times for one TDES operation. In case of TDES2K,
the 128 bit key is hereby split into two parts: K1 and K2. In case of TDES3K, the 192 bit key is split into
three parts: K1, K2 and K3.

The implementation of AES is based on FIPS PUB 197. The method always operates on entire data blocks
of 16 bytes, the key-length is 128 bit.

DES Encrypt

DES Decrypt

DES Encrypt

Plain Block — K1 K2 K1 —» Ciphered Block
Ciphered Block —p DES Dechgl DES Enchy DES Dechiy — Plain Block
K1 K2 K1
Figure 29.1: TDES2K Operation
. D
Plain Block —» DES E;crypt DES lli);:crypt ES Egcrypt —» Ciphered Block

Ciphered Block

—

DES Decrypt
K3

DES Encrypt
K2

DES Decrypt
K1

—> Plain Block

Figure 29.2: TDES3K Operation

The cryptographic APl may be used to simply encrypt/decrypt a single block or to encrypt/decrypt a chain
of blocks using the CBC-method (Ciphered Block Chaining).
In CBC mode, every ciphering operation depends on the foregoing step, this is achieved by involving the

Page 176 of 204

29 Cryptographic Operations EC

so-called Init Vector IV. The first CBC-operation usually works with an Init Vector that is set to zero.

For encryption, a plain data block P is logically XOR-ed with this Init Vector before it comes to encryption.
The result is a ciphered block C which serves as Init Vector for the next operation. See the schematic
below for details:

P P2 Py
v —> ... A$
Encryption Encryption Encryption
v v
Ci C, Cn

Figure 29.3: CBC Enciphering scheme

If a ciphered block C is decrypted, the result is logically XOR-ed with the Init Vector. See the schematic
below for details:

Cy C, Cn
4 y
Decryption Decryption Decryption
v —> ..
P1 P> Pn

Figure 29.4: CBC Deciphering scheme

Page 177 of 204

29 Cryptographic Operations ELATEC

29.1 Initialization

The cryptographic APl has to be initialized before it can be used. During initialization the key is passed to
the cryptographic method and assigned to a cryptographic environment. After initialization the functions for
encryption and decryption are set up for the desired cryptographic mode. If a cryptographic environment
is configured for CBC-operation, the internally managed Init Vector is automatically reset to zero.

void Crypto_Init
(
int CryptoEnv,
int CryptoMode,
const bytex Key,
int KeyByteCnt
)3

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants.

int CryptoMode Specify the mode of cryptographic operation. Choose either
one of the predefined non-CBC constants CRYPTOMODE_3DES,
CRYPTOMODE_3K3DES, CRYPTOMODE_AES128 or one of the pre-defined
CBC constants CRYPTOMODE_CBC_DES, CRYPTOMODE _CBC_DFN_DES,
CRYPTOMODE_CBC_3DES, CRYPTOMODE _CBC_DFN_3DES, CRYPTOMODE _CBC_3K3DES,
CRYPTOMODE_CBC_AES128.

const byte* Key The key is passed by this parameter. Depending on the specified crypto
mode, the key-length is either 16 or 24 bytes.

int KeyByteCnt Specify the length of the key in bytes.

Return: This function has no return value.

29.2 Encrypt
Use this function to encrypt a plain block of data.

void Encrypt
(
int CryptoEnv,
const bytex PlainBlock,
byte* CipheredBlock,
int BlockByteCnt
)3

Page 178 of 204

29 Cryptographic Operations

ELATEC
oy

Parameters:

int CryptoEnv

const bytex PlainBlock

bytex CipheredBlock

int BlockByteCnt

Return:

29.3 Decrypt

Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants.

Pointer to the array, that contains the plain data block to be encrypted.

Pointer to the array, that receives the encrypted data block. Take care for
proper dimensioning.

Specify the number of bytes of a block.

This function has no return value.

Use this function to decrypt an encrypted block of data.

void Decrypt

(
int CryptoEnv,

const byte* CipheredBlock,

bytex PlainBlock,
int BlockByteCnt
)s

Parameters:

int CryptoEnv

const bytex
CipheredBlock

const bytex PlainBlock

int BlockByteCnt

Return:

Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants.

Pointer to the array, that holds the encrypted data block.

Pointer to the array, that receives the decrypted data block. Take care for
proper dimensioning.

Specify the number of bytes of a block.

This function has no return value.

29.4 Reset Init Vector

Use this function to manually reset the internally managed Init Vector of a cryptographic environment to

zZero.

void CBC_ResetInitVector

(
int CryptoEnv

)

Parameters:

int CryptoEnv

Return:

Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENVO to CRYPTO_ENV3, use one of these predefined constants.

This function has no return value.

Page 179 of 204

ELATEC
oy

30 Storage Functions

30 Storage Functions

This chapter describes functions for accessing the storage of TWN4.

The storage memory is part of the internal flash of the main control unit (MCU) of TWN4. The gross
amount of this storage is 48kByte. Due to segmentation of the memory and further control mechanisms,
after deduction the memory size is 18kByte.

Before first use of the storage, the storage must be formatted. The appropriate system function for doing
S0 is FSFormat.

In order to gain access to the storage memory, the file system must be initialized and connected to the
internal flash. This can be achieved with the system function FSMount.

Why is a separate mount needed to gain access to the storage memory?

The reason for a separate mount is, that there could be a reasonable amount of time required in order to
start the file system. Background is, that depending on the state of the file system, additional activities must
be started, before access of the storage memory is possible. There is especially the situation, which can
occur, if last file operation were interrupted by a unplanned power fail. This can lead to the situation, that
the file system must be reset to the state, before the interrupted file operation was started. This clean-up
is done by function FSMount

The structure of the storage memory is similar to a none-hierarchical file system. Following points must be
known:

+ Data is structured in files.
+ Files are indicated by a file ID. The file ID is any 32 bit number.
« It is possible to iterate through the existing files and thus list the files stored in the memory.

» There is a maximum number of files, which can be stored in the memory. This maximum number is
16.

« In order to read from or write to files, appropriate system functions are available. In order to start a
file operation, the file must be opened for appropriate file operation. The maximum number of files,
which can be kept opened at a time is 4.

 File operations are kept atomic. This means: If a change to a file (some kind write operation) is
interrupted by a power fail, the file system returns to the state, where the change began.

30.1 Management Functions

30.1.1 FSMount

Before any access to files can be performed, the appropriate file system must be mounted. Following steps
are performed by function FSMount:

» Check, if the specified volume contains a valid file system.

Page 180 of 204

30 Storage Functions

ELATEC
oy

Check, if there is a not completed file operation.
« If applicable, unwind file system to the point where not completed file operation was started.

+ Finally, create a logical link between volume and file system.

bool FSMount(int StoragelD,int Mode)

Parameters:

int StorageID Specifies the volume, which should be mounted. Currently, there is one stor-
age available, the internal flash. The appropriate definition for this storage
is SID_INTERNALFLASH

int Mode Specifies the mode in which the volume is mounted. This can be
FS_MOUNT_NONE (equivalent to a unmount), FS_MOUNT_READONLY (no write
access to storage possible)or FS_MOUNT_READWRITE (full read/write access).

Return: If the operation was successful, the return value is true, otherwise it
is false. A concrete error code can be retrieved with system function
GetLastError.

30.1.2 FSFormat

This function prepares the storage memory of TWN4 for further file operations.
— WARNING — WARNING — WARNING —

All data, which is stored on the file system will be irrecoverable deleted by calling this function!

bool FSFormat(int StorageID,int MagicValue)

Parameters:

int StoragelD Specifies the volume, which should be formatted.

int MagicValue In order to avoid accidantely format of a volume, an appropriate parameter
for MagicValue must be specified. There is a definition for this magic value,
which is FS_FORMATMAGICVALUE.

Return: If the operation was successful, the return value is true, otherwise it
is false. A concrete error code can be retrieved with system function
GetLastError.

30.2 File Functions

30.2.1 FSOpen

This function must be called in order to begin any read or write operation from/to a file.

Following definitions for the parameter mode are valid:

Page 181 of 204

ELATEC
oy

30 Storage Functions

FS_READ Open a file for read access. If the file not exists, an error is generated. The
position of the read pointer is set to zero, thus to the start of the file.

FS_WRITE Open a file for write access. An empty file is created independently of if the
file already exists or not, thus content of an earlier version of that file will be
deleted.

FS_APPEND Open a file for write access. If the file does not exist, a new file is created. If

the file already exists, the file pointer is moved to the end of the file, which
means, that newly written data is appended to data of existing file.

Following further considerations:

A file can be opened one time in mode FS_WRITE or FS_APPEND, but never, if it is already opened by
any other file operation.

+ A file can be opened many times in mode FS_READ, but never, if it is already opened in mode
FS_WRITE or FS_APPEND by another file operation.

bool FSOpen(int FileEnv,int StorageID,uint32_t FileID,int Mode)

Parameters:

int FileEnv Specifies the environment to be used for the file operation. Up to four file
operations can be opened at a time. The appropriate defintions for these
environments are FILE_ENVO - FILE_ENV3.

int StorageID Specifies the storage on which the file resides. Currently, this parameter can
be SID_INTERNALFLASH only.

uint32_t FileID Specifies the ID of a file. The file ID is a reduced version of file name and
be understood as such. File ID is an integer number from 1 to 232 — 1, thus
0x00000000 to OxFFFFFFFF.

int Mode Specifies, how the file is accessed (see above).

Return: If the operation was successful, the return value is true, otherwise it
is false. A concrete error code can be retrieved with system function
GetLastError.

X

30.2.2 FSClose

This function is used to terminate a file operation. Several actions are taken, when this function is
called:

+ Pending data is written to the storage system.

« If this is the last file being closed, the file system is finalized in terms, that the even loss of the power
will restore this now achieved state.

bool FSClose(int FileEnv)

Parameters:

int FileEnv Specifies the environment to be used for the file operation.

Return: If the operation was successful, the return value is true, otherwise it
is false. A concrete error code can be retrieved with system function
GetLastError.

Page 182 of 204

ELATEC
oy

30 Storage Functions

30.2.3 FSCloseAll

This function is closing all opened file operations throughout all mounted storages. This function avoids
keeping track of opened file operations.

void FSCloseAll(void)

Parameters: None.
Return: None.

30.2.4 FSSeek

Read and write operations from/to a file are implemented via a file pointer, which references the point, from
which next data is read or where next data is written. With this function, the file pointer can be moved
throughout a file and furthermore in relation to a specific point of the file.

FS_POSABS Move file position in relation to the start of the file. This results in a move of
the file pointer to an absolute position.

FS_POSREL Move the file pointer in relation to the current position. This allows an easy
skip of a number of bytes of the file.

FS_POSEND Move the file pointer in relation to the end of the file. This allows to move to
the end of the file without knowledge and independent of the length of a file.

bool FSSeek(int FileEnv,int Origin,int Pos)

Parameters:

int FileEnv Specifies the environment to be used for the file operation.

int Origin Specifies the reference point, from which the new file position is calculated
(see above).

int Pos Specifies the number of bytes in relation to the reference point. A negative
value is treated as position before reference point, a positive value is treated
as position behind the reference point.

Return: If the operation was successful, the return value is true, otherwise it
is false. A concrete error code can be retrieved with system function
GetLastError.

30.2.5 FSTell

This function returns the position of the file pointer in relation to a reference point. Please note that in
consequence, specifying FS_POSREL as origin must always return the value zero.

bool FSTell(int FileEnv,int Origin,int *Pos)

Page 183 of 204

ELATEC
oy

30 Storage Functions

Parameters:

int FileEnv Specifies the environment to be used for the file operation.

int Origin Specifies the reference point, under which the current position is calculated
(see function FSSeek).

int *Pos A pointer to an integer, which will receive the value of the position.

Return: If the operation was successful, the return value is true, otherwise it
is false. A concrete error code can be retrieved with system function
GetLastError.

30.2.6 FSReadBytes

Read bytes from a file, which has been opened in mode FS_READ before. Use function FSOpen to open the
file accordingly.

The function generates the error ERR_ENDOFFILE, if less than the requested number of bytes were read
from the file or if there are no more bytes left to be read from the file.

bool FSReadBytes(int FileEnv,void *Data,int ByteCount,int *BytesRead)

Parameters:

int FileEnv Specifies the environment to be used for the file operation.

void #*Data Pointer to an array of bytes, which receives read data.

int ByteCount Number of bytes, which should be read from the file.

int *BytesRead Pointer to an integer, which receives the number of actually read bytes. The
received value is valid even if the function returns with an error.

Return: If the operation was successful, the return value is true, otherwise it
is false. A concrete error code can be retrieved with system function
GetLastError.

30.2.7 FSWriteBytes

Write bytes to a file, which has been opened in mode FS_WRITE or FS_APPEND before. Use function FSOpen
to open the file accordingly.

bool FSWriteBytes(int FileEnv,const void *Data,int ByteCount,int *BytesWritten)

Parameters:

int FileEnv Specifies the environment to be used for the file operation.

const void #*Data Pointer to an array of bytes, which contains data to be written.

int ByteCount Number of bytes, which should be written to the file.

int *BytesWritten Pointer to an integer, which receives the number of actually written bytes.
The received value is valid even if the function returns with an error.

Return: If the operation was successful, the return value is true, otherwise it
is false. A concrete error code can be retrieved with system function
GetLastError.

Page 184 of 204

ELATEC
oy

30 Storage Functions

30.3 Directory Functions

30.3.1 FSFindFirst

The functions FSFindFirst/FSFindNext implement the possibility to enumerate the files contained in a
files system. In order to begin enumeration of files the function FSFindFirst must be called.

The members of a directory entry are stored in a structure of type TFileInfot. The members of the
structure are:

ID The file ID.
Length The length of the file.

bool FSFindFirst(int StoragelID,TFileInfo *pFileInfo)

Parameters:
int StoragelD Storage ID of the file system, where files should be enumerated.
TFileInfo *pFileInfo Pointer to a structure of type TFileInfo which receives a directory entry.

Return: If the operation was successful, the return value is true, otherwise it is
false. If no directory entry was found the error code ERR_FILENOTFQUND is
generated. The concrete error code can be retrieved with system function
GetLastError.

30.3.2 FSFindNext

The functions FSFindFirst/FSFindNext implement the possibility to enumerate the files contained in a
files system. In order to continue enumeration, once first entry has been retrieved with function FSFindFirst,
the function FSFindNext must be called.

bool FSFindNext(TFileInfo #*pFileInfo)

Parameters:
TFileInfo *pFileInfo Pointer to a structure of type TFileInfo which receives a directory entry.

Return: If the operation was successful, the return value is true, otherwise it is
false. If no directory entry was found the error code ERR_FILENOTFOUND is
generated. The concrete error code can be retrieved with system function
GetLastError.

30.3.3 FSDelete

Use function FSDelete to delete files from the file system. A file, which is currently opened can not be
deleted.

bool FSDelete(int StorageID,uint32_t FileID)

Page 185 of 204

30 Storage Functions

ELATEC
oy

Parameters:
int StoragelD
uint32_t FilelD

Return:

30.3.4 FSRename

Storage ID of the file in question.
File ID of the file to be deleted.

If the operation was successful, the return value is true, otherwise it
is false. A concrete error code can be retrieved with system function
GetLastError.

Use function FSRename to rename files on the file system.

bool FSRename(int StorageID,uint32_t 01dFileID,uint32_t NewFileID)

Parameters:

int StoragelD
uint32_t 01dFileID
uint32_t NewFileID

Return:

Storage ID of the file in question.
Current file ID of the file to be renamed.
Future file ID of the file to be renamed.

If the operation was successful, the return value is true, otherwise it
is false. A concrete error code can be retrieved with system function
GetLastError.

30.4 Miscellaneous Functions

30.4.1 FSGetStoragelnfo

Function FSGetStorageInfo allows to retrieve information regarding a storage.

bool FSGetStorageInfo(int StorageID,TStorageInfo *pStorageInfo)

Parameters:
int StoragelD

TStorageInfo
*pStoragelnfo

Return:

ID of the storage in question.
Pointer to a structure of type TStorageInfo, which receives the requested
information.

If the operation was successful, the return value is true, otherwise it
is false. A concrete error code can be retrieved with system function
GetLastError.

The structure TStorageInfo is defined as follows:

typedef struct

{
byte ID;
uint32_t Size;
uint32_t Free;

} TStorageInfo;

where:

Page 186 of 204

ELATEC

30 Storage Functions
byte ID ID of the storage in question.
uint32_t Size Size in bytes of the storage.
uint32_t Free Number of free bytes in the storage.

30.5 Examples

This is an example for a function, which reads a complete file from the file system. The file system must
have been mounted before with function FSMount.

bool ReadFilel(uint32_t FileID,byte *Data,int *FileLength,int MaxFileLength)
{
if (!FSOpen(FILE_ENVO,SID_INTERNALFLASH,FileID,FS_READ))
return false;
FSReadBytes (FILE_ENVO,Data,MaxFileLength,FileLength) ;
int LastError = GetLastError();
FSClose (FILE_ENVO) ;
if (LastError != ERR_NONE && LastError !'= ERR_ENDOFFILE)
return false;
// Function was successfully completed
return true;

Here is an example for a function, which reads a complete file from the file system but in portions of
256 bytes. This might be useful, if the implementation is actually done on a host, which is doing system
calls indirectly via TWN4 Simple Protocol. The file system must have been mounted before with function
FSMount.

bool ReadFile2(uint32_t FileID,byte *Data,int *Length,int ExpectedLength)
{
*Length = 0;
if (!FSOpen(FILE_ENVO,SID_INTERNALFLASH,FileID,FS_READ))
return false;
bool ReadSuccess;
int RemainingBytes = ExpectedLength;

do
{
if (RemainingBytes == 0)
{
FSClose (FILE_ENVO) ;
return true;
3

const int BlockSize = 256;
int BytesToRead = RemainingBytes;
if (BytesToRead > BlockSize)
BytesToRead = BlockSize;
int BytesRead;
ReadSuccess = FSReadBytes(FILE_ENVO,Data,BytesToRead,&BytesRead) ;
Data += BytesRead;
*Length += BytesRead;
RemainingBytes -= BytesRead;
}
while (ReadSuccess);
int LastError = GetLastError();
FSClose (FILE_ENVO) ;
if (LastError != ERR_NONE && LastError !'= ERR_ENDOFFILE)

Page 187 of 204

ELATEC

30 Storage Functions

return false;
// Function was successfully completed
return true;

Here is an example for a function, which writes a complete file to the file system in portions of 256 bytes.
This might be useful, if the implementation is actually done on a host, which is doing system calls indirectly
via TWN4 Simple Protocol. The file system must have been mounted before with function FSMount.

bool WriteFile(uint32_t FileID,byte *Data,int Length)

{
if (!FSOpen(FILE_ENVO,SID_INTERNALFLASH,FileID,FS_WRITE))
return false;
bool WriteSuccess;
int RemainingBytes = Length;
do
{
if (RemainingBytes == 0)
{
FSClose (FILE_ENVO) ;
return true;
}
const int BlockSize = 256;
int BytesToWrite = RemainingBytes;
if (BytesToWrite > BlockSize)
BytesToWrite = BlockSize;
int BytesWritten;
WriteSuccess = FSWriteBytes(FILE_ENVO,Data,BytesToWrite,&BytesWritten);
Data += BytesWritten;
RemainingBytes -= BytesWritten;
}
while (WriteSuccess);
int LastError = GetLastError();
FSClose (FILE_ENVO) ;
if (LastError !'= ERR_NONE)
return false;
// Function was successfully completed
return true;
}

Page 188 of 204

ELATEC
oy

31 System Parameters

31 System Parameters

The TWN4 App-system provides methods of setting up paramaters before or during runtime of Apps.

« In order to set up parameters before the App is started, a so-called Manifest can be specified as part
of an App.

* In order to set up parameters during normal execution of an App there is the system function
SetParameters.

This section describes the specification of a Manifest and all available parameters. See chapter "System
Functions" for a description of function SetParameters.

31.1 TLV Format

Parameters for a Manifest or the system function SetParameters are specified in the TLV format. The
TLV format specifies a chain of parameters with variable type and length. This format must follow following
rules:

» Every entry (except the last entry) is a sequence of 3 items. The 3 items are 'Type’, ’Length’ and
"Value’.

» The name of the parameter is associated to 'Type’, the length of
« the value is associated to 'Length’ and the value itself is associated to 'Value’

» The TLV list must be terminated with an item consisting of just the type. This type must contain the
value TLV_END.

31.2 Manifest

The intention for specifying a Manifest as part of an App could be to avoid opening of communication
channels in order to further reduce current consumption. Another could be to modify behaviour of the USB
section of TWN4.

The specification of a Manifest is pretty simple:

Define an array of bytes with the key-name Manifest. This will point the firmware of TWN4 to the position
where the parameters of interest are stored. Here is an example:

Example:

// This sample demonstrates the specification of a Manifest:
const byte *Manifest =
{
OPEN_PORTS, 1, OPEN_PORT_USB_MSK, // Open USB channel only
TLV_END // End of TLV
s

Page 189 of 204

ELATEC
oy

31 System Parameters

No further action is required.

Page 190 of 204

31 System Parameters

ELATEC
oy

31.3 Available Parameters

Here is a list of all parameters, which are supported:

Type (Parameter) Length | Value
TLV_END N/A N/A
OPEN_PORTS 1 Bitwise OR of one or more of the following definitions:

OPEN_PORT_USB_MSK
OPEN_PORT_COM1_MSK
OPEN_PORT_COM2_MSK

EXECUTE_APP

EXECUTE_APP_AUTO
EXECUTE_APP_ALWAYS

INDITAG_READMODE

INDITAG_READMODE_1
INDITAG_READMODE_2

COTAG_READMODE

COTAG_READMODE_HASH
COTAG_READMODE_1
COTAG_READMODE_2

COTAG_VERIFY

COTAG_VERIFY_OFF
COTAG_VERIFY_ON

HONEYTAG_READMODE

HONEYTAG_READMODE_HASH
HONEYTAG_READMODE_1

ICLASS_READMODE

ICLASS_READMODE_UID
ICLASS_READMODE_PAC

AT55_BITRATE

8 to 128 as multiple of 2

AT55_0PTIONS

One of the following definitions:
AT55_0PT_SEQUENCENONE
AT55_0PT_SEQUENCETERMINATOR
AT55_0PT_SEQUENCESTARTMARKER

CCID_MAXSLOTINDEX

Specify index of last logical CCID slot

HITAG1S_TO

Values from 14 to 40

HITAG1S_T1

Values from 14 to 40

HITAG1S_TGAP

Values from 2 to 14

HITAG2_TO

Values from 14 to 40

HITAG2_T1

Values from 14 to 40

HITAG2_TGAP

Values from 2 to 14

IS014443_BITRATE_TX

One of the following possible bitrates:
1S014443_BITRATE_106
1S014443_BITRATE_212
1S014443_BITRATE_424
1S014443_BITRATE_848

Page 191 of 204

31 System Parameters

ELATEC
oy

Continued from last page:

IS014443_BITRATE_RX

One of the following possible bitrates:
IS014443_BITRATE_106
1S014443_BITRATE_212
IS014443_BITRATE_424
I1S014443_BITRATE_848

USB_SUPPORTREMOTEWAKEUP

USB_SUPPORTREMOTEWAKEUP_OFF
USB_SUPPORTREMOTEWAKEUP_ON

EM4102_0OPTIONS

Bitwise OR of one or more of the following definitions:

EM4102_0PTIONS_F64
EM4102_OPTIONS_F32

EM4150_OPTIONS

Bitwise OR of one or more of the following definitions:

EM4150_0PTIONS_F64
EM4150_0PTIONS_F40

USB_SERIALNUMBER

USB_SERIALNUMBER_OFF
USB_SERIALNUMBER_ON

USB_KEYBOARDREPEATRATE

Number of milliseconds per keyboard event

SEOS_TREATMENT

SEOS_TREATMENT_ICLASS
SEOS_TREATMENT_IS014443A

SUPPORT_CONFIGCARD

SUPPORT_CONFIGCARD_OFF
SUPPORT_CONFIGCARD_ON

IS014443_3_TDX_CRCCONTROL

0x00 or bitwise OR of one or more of the following definitions:

I5014443_3_TDX_CRCCTRL_TX
IS014443_3_TDX_CRCCTRL_RX

Page 192 of 204

32 System Errors

ELATEC
oy

32 System Errors

Here is a list of all error codes, which are generated by the firmware of TWN4. The error codes can be
retrieved with function GetLastError.

In the current version of the firmware, storage functions (FS. . .) are generating such errors.

Error Code

Description

ERR_NONE

No error occured.

ERR_OUTOFMEMORY

The excution of a function required more memory than was available.

ERR_ISALREADYINIT

There was a try to initialize a system module, which already was initialized.

ERR_NOTINIT

There was a try to use a function from a module, which is not initialized.

ERR_ISALREADYOPEN

There was a try to open a system resource, which is already is open.

ERR_NOTOPEN

There was a try to use a system resource, which must be opened before
usage.

ERR_RANGE

A specified parameters exceeded the valid range of values.

ERR_PARAMETER

A specified parameters is not in set of valid parameters.

ERR_UNKNOWNSTORAGEID

A storage ID was specified, which is not known by the firmware.

ERR_WRONGINDEX

A index was specified, which was out of the valid range.

ERR_FLASHERASE

The erase of a section of the flash failed.

ERR_FLASHWRITE

The write to the flash memory failed.

ERR_SECTORNOTFOUND

A sector of the file system was not found.

ERR_STORAGEFULL

All sectors of the file system are occupied.

ERR_STORAGEINVALID

There is an error in the file system.

Page 193 of 204

32 System Errors

ELATEC
oy

ERR_TRANSACTIONLIMIT

The limit of changes in the file system is reached, which is possible
within one transactions.

ERR_UNKNOWNFS

The file system on the specified storage is not supported by the current
firmware.

ERR_FILENOTFQOUND

The specified file was not found.

ERR_FILEALREADYEXISTS

The specified file already exists.

ERR_ENDOFFILE

The end of the file was reached. There is no more data to be read.
Note: This error code is generated even the system function returned
successful execution.

ERR_STORAGENOTFOUND

The specified storage was not found, e.g. because it is not mounted.

ERR_STORAGEALREADYMOUNTED

The specified storage is already mounted.

ERR_ACCESSDENIED

The access to a file was denied, e.g. write access to a file in a storage,
which is mounted as read only.

ERR_FILECORRUPT

The specified file is corrupt in terms of a corrupted file system.

ERR_INVALIDFILEENV

The specified environment is invalid.

ERR_INVALIDFILEID

The specified file ID is invalid.

ERR_RESOURCELIMIT

The maximum number of available resources have bee occupied.

Please see file twn4.sys.h (which can be found in local directory Tools\sys\ of the developer pack) for
concrete numbers, which are behind the definitions.

Page 194 of 204

33 Runtime Library ELATEC

33 Runtime Library

There is a couple of functions, which are not part of the firmware of TWN4. Instead, they are statically
linked to the App.

There are several intentions for such functions:
+ Provide functions instead of having similar code in each App.
» Provide an API at a higher level to simplify writing Apps.
* Maintain a degree of compatibility to TWNS3.

33.1 Timer Functions

Include file: apptools.h

There are three functions, which implement a simple API, which allows triggering events after a specified
time. The behaviour of the functions are similar to TWN3. Compared to TWNS, there is only one timer
available. Therefore no timer ID must be specified. These timer functions are implemented using system
function GetSysTicks.

33.1.1 StartTimer

Start the timer with a specified time.

void StartTimer (unsigned long Duration)

Parameters:
unsigned long Duration Time in milliseconds, till function TestTimer returns true.

Return: None.

33.1.2 StopTimer

Stop the timer, thus function TestTimer will never return true.

void StopTimer(void);

Parameters: None.
Return: None.

Page 195 of 204

33 Runtime Library ELATEC

33.1.3 TestTimer

Test, if the timer reached the timeout which was programmed by function StartTimer.

bool TestTimer (void);

Parameters: None.

Return: If the timeout has been reached, the function returns true, otherwise, it
return false.

33.2 Host Communication

Include file: apptools.h

There are several function which implement a simplified interface for direct write to the host. The host is de-
fined to be a communication channel, where all communication takes place. This removes the requirement
to specify the communication channel every time when communication should take place.

For a more sophisticated kind of communication (binary, bidirectional), it is suggested to directly use the
I/0O functions from the firmware.

33.2.1 SetHostChannel

Specify the channel, where communication should take place. By default, the channel is determined
by the connected communication cable, which is therefore either USB (TWN4 USB) or COM1 (TWN4
RS232).

void SetHostChannel(int Channel)

Parameters:

int Channel Specifies the communication channel to be used. This might
be CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2 or CHANNEL_I2C or
CHANNEL_NONE. If CHANNEL_NONE is specified, channel will be choosen de-
pending on connected communication cable.

Return: None.

33.2.2 HostTestByte

Use this function to check if there is a byte available in the input buffer of the host-channel.

bool HostTestByte(void)

Parameters: None.

Return: If there is a byte available, the return value is true, otherwise it is false.

33.2.3 HostReadByte

Use this function to read a byte from the input buffer of the host-channel. If there is no byte available, the
function blocks until there is one.

Page 196 of 204

33 Runtime Library ELATEC

byte HostReadByte(void)

Parameters: None.
Return: The byte which was read from the input buffer.

33.2.4 HostTestChar

Test if a character is available from the host. The character can be read with function HostReadChar.

bool HostTestChar (void)

Parameters: None.

Return: true if at least one character arrived, otherwise false.

33.2.5 HostReadChar

Receive a character from the host. This is a blocking function. This means, it is waiting, till a character is
available.

char HostReadChar(void)

Parameters: None.

Return: The character, which was read from the host.

33.2.6 HostWriteByte

Use this function to send one byte to the host through the actually configured host-channel. If the output
buffer is completely occupied, the function blocks until there is enough space.

void HostWriteByte(byte Byte)

Parameters:
byte Byte The byte to be sent.
Return: None.

33.2.7 HostWriteChar

Send a character to the host. This is a blocking function. This means, it is waiting, till there is storage in
the output buffer, to transmit the character.

void HostWriteChar (char Char)

Parameters:
char Char The character to be sent to the host.
Return: None.

Page 197 of 204

33 Runtime Library ELATEC

33.2.8 HostWriteString

Send a string to the host. The string must be terminated with a null character. The string is sent without
the null character.

void HostWriteString(const char *String)

Parameters:
const char *String Pointer to the string to be sent.
Return: None.

33.2.9 HostWriteRadix

Send a number to the host in ASCII format. The number is specified by an array of bytes containing the
binary data.

void HostWriteRadix(const byte *ID,int BitCnt,int DigitCnt,int Radix)

Parameters:
const byte *ID Pointer to the array of bytes.
int BitCnt Number of bits stored in the array.
int DigitCnt Number of output digits.
int Radix Base for conversion from binary to ASCII. Use:
« 2 for binary conversion
8 for octal conversion
» 10 for decimal conversion
» 16 for hexadecimal conversion
Return: None.

33.2.10 HostWriteBin

Send a binary number to the host in ASCII format. The number is specified by an array of bytes containing
the binary data.

void HostWriteBin(const byte *ID,int BitCnt,int DigitCnt)

Parameters:

const byte *ID Pointer to the array of bytes.

int BitCnt Number of bits stored in the array.
DigitCnt Number of output digits.

Return: None.

33.2.11 HostWriteDec

Send a decimal number to the host in ASCII format. The number is specified by an array of bytes containing
the binary data.

Page 198 of 204

33 Runtime Library ELATEC

void HostWriteDec(const byte *ID,int BitCnt,int DigitCnt)

Parameters:

const byte *ID Pointer to the array of bytes.

int BitCnt Number of bits stored in the array.
DigitCnt Number of output digits.

Return: None.

33.2.12 HostWriteHex

Send a hexadecimal number to the host in ASCII format. The number is specified by an array of bytes
containing the binary data.

void HostWriteHex(const byte *ID,int BitCnt,int DigitCnt)

Parameters:

const byte *ID Pointer to the array of bytes.

int BitCnt Number of bits stored in the array.
DigitCnt Number of output digits.

Return: None.

33.2.13 HostWriteVersion

Send the firmware version to the host. This function is sending the result of function GetVersionString
to the host.

void HostWriteVersion(void)

Parameters: None.
Return: None.

33.3 Beep Functions

Include file: apptools.h

The beep functions implement a simplified API around the system function Beep.

33.3.1 SetVolume

Set the beeper volume. The default volume is 0.

void SetVolume(int NewVolume)

Parameters:
int NewVolume Specify the volume in percent from 0 to 100.
Return: None.

Page 199 of 204

33 Runtime Library ELATEC

33.3.2 GetVolume

Read current volume.

int GetVolume(void);

Parameters: None.
Return: Current volume in arange from 0 to 100.
33.3.3 BeepLow

Perform a beep at a frequency of BEEP_FREQUENCY_LOW (2057 Hz) with a duration of 50 milliseconds.
void BeepLow(void)

Parameters: None.
Return: None.

33.3.4 BeepHigh

Perform a beep at a frequency of BEEP_FREQUENCY_HIGH (2400 Hz) with a duration of 50 milliseconds.
This is meant to be the standard signal for a successful operation, e.g. read of a transponder.

void BeepHigh(void)

Parameters: None.
Return: None.

33.4 Compatibility to TWN3

Include file: apptools.h

Currently, there is one function for maintaining 100% backward compatibility to TWN3 applications.

33.4.1 ConvertTagTypeToTWN3

This functions converts a tag type from the TWN4 system to TWN3 system. Due to the fact that TWN4
covers a broader range of transponders, the situation might occure, that a conversion is not possible.
Under that circumstance the TWNS3 value TAGTYPE_NONE (0) is returned.

int ConvertTagTypeToTWN3(int TagTypeTWN4)

Parameters:
int TagTypeTWN4 Tag type as returned e.g. by TWN4 system function SearchTag.
Return: Corresponding tag type as it would be returned by TWNS3 system function

TagSearch.

Page 200 of 204

33 Runtime Library ELATEC

33.5 Simple Protocol

Include file: prs.h

The Simple Protocol is the standard protocol for building solutions, which need operation of TWN4, which
is controlled by the host.

There is a set of functions and definitions, which allow to implement an App, which runs the Simple Proto-
col. There are some options, which have influence on some details of the Simple Protocol (ASCll/binary
mode, CRC). Furthermore, these functions allow to specify custom communication channel and configure
the host interface before starting the communication.

The simplest App for using these functions could be written as follows:

#include <twn4.sys.h>
#include <prs.h>

int main(void)

{
InitSimpleProtocol (GetHostChannel () ,PRS_COMM_MODE_ASCII | PRS_COMM_CRC_OFF);
while (true)
{
if (SimpleProtoTestCommand())
{
SimpleProtoExecuteCommand () ;
SimpleProtoSendResponse() ;
}
}
}

33.5.1 SimpleProtolnit

Use this function to prepare the Simple Protocol for operation. Before starting this function, it is possible
to e.g. prepare a serial port with appropriate communication parameters.

bool SimpleProtoInit(int Channel,int Mode)

Parameters:

int Channel This parameter specifies the communication channel for the Simple Proto-
col. This can be one the channels as defined by the system 1/O functions.

int Mode This parameter specified the mode of communication. It is a or-operation,

which combines mode (PRS_COMM_MODE_ASCII or PRS_COMM_MODE_BINARY
and CRC (COMM_CRC_QFF or PRS_COMM_CRC_ON).

Return: This functions return true, if initialization was successful. Otherwise it re-
turns false.

33.5.2 SimpleProtoTestCommand

This is a none-blocking function, which polls for the availabilty of a command from the host. If the function
returns true, acommand is available. The command is stored in the global variables SimpleProtoMessage
and SimpleProtoMessagelength.

bool SimpleProtoTestCommand(void)

Page 201 of 204

33 Runtime Library ELATEC

Parameters: None.

Return: This functions return true, if a command became available. Otherwise it
returns false.

33.5.3 SimpleProtoExecuteCommand

This function executes a command stored in the global variables SimpleProtoMessage and SimpleProtoMessageleng
After execution of the command, these variables contain the response to be sent to the host.

void SimpleProtoExecuteCommand(void)

Parameters: None.
Return: None.

33.5.4 SimpleProtoSendResponse

This function sends a response stored in the global variables SimpleProtoMessage and SimpleProtoMessagelength
to the host.

void SimpleProtoSendResponse(void)

Parameters: None.

Return: None.

Page 202 of 204

34 Compatibility of TWN4 MultiTech Mini Reader

ELATEC
oy

34 Compatibility of TWN4 MultiTech Mini Reader

Due to reduced functionality of TWN4 MultiTech Mini Reader, several API functions are not available. If an
API function is called, which is not supported by TWN4 MultiTech Mini Reader the device stops execution

of the App and enters exception state (diagnostic LED is flashing three times).

API Supported | Remark

System Functions Yes

I/0 Functions Yes COM2 is not supported

Memory Functions Yes

Peripheral Functions Yes Support of GPIO0 to GPIO3 only, Beep is doing delay
only

Conversion Functions Yes

I2C Functions No

RF Functions Yes

HITAG 1 and HITAG S Functions No

HITAG 2 Functions No

EM4x50 Functions No

AT55xx Functions No

TILF (TIRIS) Functions No

LEGIC Functions No

MIFARE Classic Functions Yes

MIFARE Ultralight (-C) Functions Yes

ISO15693 Functions Yes

Cryptographic Functions Yes

DESFire Functions Yes

Contact Card Functions Yes SAM1 only

iCLASS Functions Yes

ISO14443 Functions Yes

NFC SNEP Functions Yes

System Parameters Yes

Runtime Library Yes

Page 203 of 204

ELATEC
oy

35 Disclaimer

35 Disclaimer

Elatec reserves the right to change any information or data in this document without prior notice. The
distribution and the update of this document is not controlled. Elatec declines all responsibility for the use
of product with any other specifications but the ones mentioned above. Any additional requirement for a
specific custom application has to be validated by the customer himself at his own responsibility. Where
application information is given, it is only advisory and does not form part of the specification.

All referenced brands, product names, service names and trademarks mentioned in this document are the
property of their respective owners.

Page 204 of 204

	1 System Functions
	1.1 SysCall
	1.2 Reset
	1.3 StartBootloader
	1.4 GetSysTicks
	1.5 GetVersionString
	1.6 GetUSBType
	1.7 GetDeviceType
	1.8 Sleep
	1.9 GetDeviceUID
	1.10 SetParameters
	1.11 GetLastError

	2 I/O Functions
	2.1 Configuration
	2.1.1 Set COM-Port Parameters
	2.1.2 Get USB Device State
	2.1.3 Get Host Channel

	2.2 Miscellaneous Functions
	2.2.1 Wake Up Host

	2.3 Data I/O
	2.3.1 Query I/O Buffer Size
	2.3.2 Get I/O Buffer Byte Count
	2.3.3 Test Empty
	2.3.4 Test Full
	2.3.5 Send Byte
	2.3.6 Send Multiple Bytes
	2.3.7 Read Byte
	2.3.8 Read Multiple Bytes

	3 Memory Functions
	3.1 Byte Operations
	3.1.1 Compare Bytes
	3.1.2 Copy Bytes
	3.1.3 Fill Bytes
	3.1.4 Swap Bytes

	3.2 Bit Operations
	3.2.1 Read Bit
	3.2.2 Write Bit
	3.2.3 Copy Bit
	3.2.4 Compare Bits
	3.2.5 Copy Bits
	3.2.6 Fill Bits
	3.2.7 Swap Bits
	3.2.8 Count Bits

	4 Peripheral Functions
	4.1 General Purpose Inputs/Outputs (GPIOs)
	4.1.1 Configuration
	4.1.1.1 Outputs
	4.1.1.2 Inputs

	4.1.2 Basic Port Functions
	4.1.2.1 Set GPIOs to Logical Level
	4.1.2.2 Toggle GPIOs
	4.1.2.3 Waveform Generation
	4.1.2.4 Read GPIOs

	4.1.3 Higher Level Port Functions
	4.1.3.1 Send Data in Wiegand Format
	4.1.3.2 Send Data in Omron Format

	4.2 Beeper
	4.3 LEDs
	4.3.1 General Purpose LED Functions
	4.3.1.1 Initialization
	4.3.1.2 Set LEDs On/Off
	4.3.1.3 Toggle LEDs
	4.3.1.4 Blink LEDs
	4.3.1.5 Get LED State

	4.3.2 Diagnostic LED
	4.3.2.1 Set Diagnostic LED On/Off
	4.3.2.2 Toggle Diagnostic LED
	4.3.2.3 Get LED State

	5 Conversion Functions
	5.1 Hexadecimal ASCII to Binary
	5.1.1 Scan Hexadecimal Character
	5.1.2 Scan Hexadecimal String

	5.2 Binary to Hexadecimal ASCII

	6 I2C Functions
	6.1 Initialization/Deinitialization
	6.1.1 I2CInit
	6.1.2 I2CDeInit
	6.1.3 Examples

	6.2 Communication (Master)
	6.2.1 I2CMasterStart
	6.2.2 I2CMasterStop
	6.2.3 I2CMasterTransmitByte
	6.2.4 I2CMasterReceiveByte
	6.2.5 I2CMasterBeginWrite
	6.2.6 I2CMasterBeginRead
	6.2.7 I2CMasterSetAck
	6.2.8 Examples

	6.3 Communication (Slave)
	6.3.1 Slave to Master
	6.3.2 Master to Slave
	6.3.3 Examples

	7 SPI Functions
	7.1 Initialization/Deinitialization
	7.1.1 SPIInit
	7.1.2 SPIDeInit

	7.2 Communication
	7.2.1 SPIMasterBeginTransfer
	7.2.2 SPIMasterEndTransfer
	7.2.3 SPITransceive
	7.2.4 SPITransmit
	7.2.5 SPIReceive

	7.3 Examples

	8 RF Functions
	8.1 SearchTag
	8.2 SetRFOff
	8.3 SetTagTypes
	8.3.1 Supported Types of LF Tags (125kHz-134.2kHz)
	8.3.2 Supported Types of HF Tags (13.56MHz, Bluetooth)

	8.4 GetTagTypes
	8.5 GetSupportedTagTypes

	9 EM4x02-Specific Transponder Operations
	9.1 Function
	9.1.1 EM4102_GetTagInfo

	10 HITAG1- and HITAGS-Specific Transponder Operations
	10.1 Read/Write Data
	10.1.1 Hitag1S_ReadPage
	10.1.2 Hitag1S_WritePage
	10.1.3 Hitag1S_ReadBlock
	10.1.4 Hitag1S_WriteBlock

	10.2 Hitag1S_Halt

	11 HITAG2-Specific Transponder Operations
	11.1 Read/Write Data
	11.1.1 Hitag2_ReadPage
	11.1.2 Hitag2_WritePage
	11.1.3 Hitag2_SetPassword

	11.2 Hitag2_Halt

	12 EM4x50-Specific Transponder Operations
	12.1 Functions
	12.1.1 EM4150_Login
	12.1.2 EM4150_ReadWord
	12.1.3 EM4150_WriteWord
	12.1.4 EM4150_WritePassword
	12.1.5 EM4150_GetTagInfo

	13 AT55xx-Specific Transponder Operations
	13.1 Control Functions
	13.1.1 AT55_Begin

	13.2 Read Data
	13.2.1 AT55_ReadBlock
	13.2.2 AT55_ReadBlockProtected

	13.3 Write Data
	13.3.1 AT55_WriteBlock
	13.3.2 AT55_WriteBlockProtected
	13.3.3 AT55_WriteBlockAndLock
	13.3.4 AT55_WriteBlockProtectedAndLock

	14 TILF (TIRIS) Functions
	14.1 Search Function
	14.1.1 TILF_SearchTag

	14.2 Single-Page Read/Write Function
	14.2.1 TILF_ChargeOnlyRead
	14.2.2 TILF_ChargeOnlyReadLo
	14.2.3 TILF_SPProgramPage
	14.2.4 TILF_SPProgramPageLo

	14.3 Multi-Page Read/Write Function
	14.3.1 TILF_MPGeneralReadPage
	14.3.2 TILF_MPSelectiveReadPage
	14.3.3 TILF_MPProgramPage
	14.3.4 TILF_MPSelectiveProgramPage
	14.3.5 TILF_MPLockPage
	14.3.6 TILF_MPSelectiveLockPage
	14.3.7 TILF_MPGeneralReadPageLo
	14.3.8 TILF_MPSelectiveReadPageLo
	14.3.9 TILF_MPProgramPageLo
	14.3.10 TILF_MPSelectiveProgramPageLo
	14.3.11 TILF_MPLockPageLo
	14.3.12 TILF_MPSelectiveLockPageLo

	14.4 Multi-Usage Read/Write Function
	14.4.1 TILF_MUGeneralReadPage
	14.4.2 TILF_MUSelectiveReadPage
	14.4.3 TILF_MUSpecialReadPage
	14.4.4 TILF_MUProgramPage
	14.4.5 TILF_MUSelectiveProgramPage
	14.4.6 TILF_MUSpecialProgramPage
	14.4.7 TILF_MULockPage
	14.4.8 TILF_MUSelectiveLockPage
	14.4.9 TILF_MUSpecialLockPage

	15 ISO14443 Transponder Operations
	15.1 ISO14443A
	15.1.1 Get ATQA
	15.1.2 Get SAK
	15.1.3 Get ATS

	15.2 ISO14443B
	15.2.1 Get ATQB
	15.2.2 Get Answer to ATTRIB

	15.3 Check Presence
	15.4 ISO14443-3 Transparent Data Exchange
	15.5 ISO14443-4 Transparent Data Exchange
	15.6 Multiple Tag Handling
	15.6.1 Search for Transponders
	15.6.2 Select Transponder

	16 MIFARE Classic Specific Transponder Operations
	16.1 Login
	16.2 Read/Write Data
	16.2.1 Read Data Block
	16.2.2 Write Data Block

	16.3 Handling of Value Blocks
	16.3.1 Read Value Block
	16.3.2 Write Value Block
	16.3.3 Increment Value Block
	16.3.4 Decrement Value Block
	16.3.5 Copy Value Block

	17 MIFARE Plus Specific Transponder Operations
	17.1 Personalisation
	17.1.1 Write Personalisation
	17.1.2 Commit Personalisation

	17.2 Authenticate AES
	17.3 Security Level 3
	17.3.1 Read/Write Data
	17.3.1.1 Read Data Block
	17.3.1.2 Write Data Block

	17.3.2 Handling of Value Blocks
	17.3.2.1 Read Value Block
	17.3.2.2 Write Value Block
	17.3.2.3 Increment Value Block
	17.3.2.4 Decrement Value Block
	17.3.2.5 Copy Value Block

	18 MIFARE Ultralight/Ultralight C/Ultralight EV1 Specific Transponder Operations
	18.1 Authentication (Ultralight C only)
	18.1.1 Authentication with given Key
	18.1.2 Authentication using SAM Card

	18.2 Write Key from SAM to Transponder Key Storage Area
	18.3 Read/Write Data
	18.3.1 Read Page
	18.3.2 Write Page

	18.4 Mifare Ultralight EV1
	18.4.1 Fast Read
	18.4.2 Increment Counter
	18.4.3 Read Counter
	18.4.4 Read ECC Signature
	18.4.5 Get Transponder Information
	18.4.6 Password Authentication
	18.4.7 Check Tearing Event

	19 NTAG Specific Transponder Operations
	19.1 Read/Write Data
	19.1.1 Read Page
	19.1.2 Write Page
	19.1.3 Fast Read

	19.2 Miscellaneous functions
	19.2.1 Read Counter
	19.2.2 Read ECC Signature
	19.2.3 Get Transponder Information
	19.2.4 Password Authentication
	19.2.5 Select Sector

	20 DESFire Specific Transponder Operations
	20.1 Security Related Operations
	20.1.1 Authenticate
	20.1.2 Get Key Version
	20.1.3 Get Key Settings
	20.1.4 Change Key Settings
	20.1.5 Change Key

	20.2 Transponder Related Operations
	20.2.1 Create Application
	20.2.2 Delete Application
	20.2.3 Get Application IDs
	20.2.4 Select Application
	20.2.5 Format Transponder
	20.2.6 Get Transponder Information
	20.2.7 Get Available Memory Space
	20.2.8 Get Card UID
	20.2.9 Set Transponder Configuration
	20.2.9.1 Disable Format Tag
	20.2.9.2 Enable Random ID
	20.2.9.3 Set Default Key
	20.2.9.4 Set User-defined Answer To Select (ATS)

	20.3 Application Related Operations
	20.3.1 Create File
	20.3.2 Delete File
	20.3.3 Get File IDs
	20.3.4 Get File Settings
	20.3.5 Change File Settings

	20.4 File Related Operations
	20.4.1 Data Files
	20.4.1.1 Read Data
	20.4.1.2 Write Data

	20.4.2 Value Files
	20.4.2.1 Get Value
	20.4.2.2 Debit
	20.4.2.3 Credit
	20.4.2.4 Limited Credit

	20.4.3 Record Files
	20.4.3.1 Read Records
	20.4.3.2 Write Record
	20.4.3.3 Clear Record File

	20.4.4 Commit Transaction
	20.4.5 Abort Transaction

	21 SAM AV1/AV2
	21.1 Host Authentication
	21.2 Query Key Entry

	22 ISO15693 Specific Transponder Operations
	22.1 Generic ISO15693 Command
	22.2 Gather Tag Specific Information
	22.2.1 Get System Information
	22.2.2 Get Tag Type
	22.2.2.1 Get Tag Type From UID
	22.2.2.2 Get Tag Type From System Information

	22.3 Read/Write Data
	22.3.1 Read Single Block
	22.3.2 Write Single Block

	23 LEGIC-Specific Functions
	23.1 Direct Access of LEGIC Chip
	23.1.1 SM4X00_GenericRaw
	23.1.2 SM4X00_Generic
	23.1.3 SM4X00_StartBootloader
	23.1.4 SM4X00_EraseFlash
	23.1.5 SM4X00_ProgramBlock

	24 iCLASS Specific Transponder Operations
	24.1 Read PAC Bits
	24.2 Example

	25 FeliCa
	25.1 Polling
	25.2 Request System Code
	25.3 Request Service
	25.4 Read Without Encryption
	25.5 Write Without Encryption
	25.6 Transparent Data Exchange

	26 Simple NDEF Exchange Protocol (SNEP)
	26.1 Initialize SNEP Service
	26.2 Get Connection State
	26.3 Query Message FIFO
	26.4 Transmit NDEF Message
	26.4.1 Begin Message
	26.4.2 Send Message Fragment
	26.4.3 Example

	26.5 Receive NDEF Message
	26.5.1 Test Message
	26.5.2 Receive Message Fragment
	26.5.3 Example

	27 BLE Functions
	27.1 BLEPresetConfig
	27.2 BLEPresetUserData
	27.3 BLEInit
	27.4 BLECheckEvent
	27.5 BLEGetAddress
	27.6 BLEGetVersion
	27.7 BLEGetEnvironment
	27.8 BLEGetGattServerAttributeValue
	27.9 BLESetGattServerAttributeValue
	27.10 BLERequestRssi
	27.11 BLERequestEndpointClose

	28 Contact Card Operations
	28.1 Microprocessor Cards
	28.1.1 Query Card Slot Status
	28.1.2 Card Activation
	28.1.3 Card Deactivation
	28.1.4 Set Communication Settings
	28.1.5 Transparent Data Transmission
	28.1.6 Exchange Of APDUs
	28.1.7 Examples
	28.1.7.1 PPS Example
	28.1.7.2 Communication Example

	28.2 Memory Cards
	28.2.1 Get ATR
	28.2.2 Read Main Memory
	28.2.3 Write Main Memory
	28.2.4 Read Security Memory
	28.2.5 Write Security Memory
	28.2.6 Read Protection Memory
	28.2.7 Write Protection Memory
	28.2.8 Compare Verification Data

	29 Cryptographic Operations
	29.1 Initialization
	29.2 Encrypt
	29.3 Decrypt
	29.4 Reset Init Vector

	30 Storage Functions
	30.1 Management Functions
	30.1.1 FSMount
	30.1.2 FSFormat

	30.2 File Functions
	30.2.1 FSOpen
	30.2.2 FSClose
	30.2.3 FSCloseAll
	30.2.4 FSSeek
	30.2.5 FSTell
	30.2.6 FSReadBytes
	30.2.7 FSWriteBytes

	30.3 Directory Functions
	30.3.1 FSFindFirst
	30.3.2 FSFindNext
	30.3.3 FSDelete
	30.3.4 FSRename

	30.4 Miscellaneous Functions
	30.4.1 FSGetStorageInfo

	30.5 Examples

	31 System Parameters
	31.1 TLV Format
	31.2 Manifest
	31.3 Available Parameters

	32 System Errors
	33 Runtime Library
	33.1 Timer Functions
	33.1.1 StartTimer
	33.1.2 StopTimer
	33.1.3 TestTimer

	33.2 Host Communication
	33.2.1 SetHostChannel
	33.2.2 HostTestByte
	33.2.3 HostReadByte
	33.2.4 HostTestChar
	33.2.5 HostReadChar
	33.2.6 HostWriteByte
	33.2.7 HostWriteChar
	33.2.8 HostWriteString
	33.2.9 HostWriteRadix
	33.2.10 HostWriteBin
	33.2.11 HostWriteDec
	33.2.12 HostWriteHex
	33.2.13 HostWriteVersion

	33.3 Beep Functions
	33.3.1 SetVolume
	33.3.2 GetVolume
	33.3.3 BeepLow
	33.3.4 BeepHigh

	33.4 Compatibility to TWN3
	33.4.1 ConvertTagTypeToTWN3

	33.5 Simple Protocol
	33.5.1 SimpleProtoInit
	33.5.2 SimpleProtoTestCommand
	33.5.3 SimpleProtoExecuteCommand
	33.5.4 SimpleProtoSendResponse

	34 Compatibility of TWN4 MultiTech Mini Reader
	35 Disclaimer

