
TWN4

API Reference

DocRev26, March 5, 2021

ELATEC GmbH

Contents

Contents

1 Definitions and Function Prototypes . 3
2 System Functions . 4

2.1 SysCall . 4
2.2 Reset . 4
2.3 StartBootloader . 4
2.4 GetSysTicks . 4
2.5 GetVersionString . 5
2.6 GetUSBType . 5
2.7 GetDeviceType . 6
2.8 Sleep . 6
2.9 GetDeviceUID . 7
2.10 SetParameters . 7
2.11 GetLastError . 8

3 Interrupt System . 9
3.1 SetInterruptHandler . 9
3.2 GPIOConfigureInterrupt . 11

4 I/O Functions . 12
4.1 Configuration . 12

4.1.1 Set COM-Port Parameters . 12
4.1.2 Get USB Device State . 13
4.1.3 Get Host Channel . 13

4.2 Miscellaneous Functions . 13
4.2.1 Wake Up Host . 13

4.3 Data I/O . 13
4.3.1 Query I/O Buffer Size . 13
4.3.2 Get I/O Buffer Byte Count . 14
4.3.3 Test Empty . 14
4.3.4 Test Full . 15
4.3.5 Send Byte . 15
4.3.6 Send Multiple Bytes . 16
4.3.7 Read Byte . 16
4.3.8 Read Multiple Bytes . 17

5 Memory Functions . 18
5.1 Byte Operations . 18

5.1.1 Compare Bytes . 18
5.1.2 Copy Bytes . 18
5.1.3 Fill Bytes . 19
5.1.4 Swap Bytes . 19

5.2 Bit Operations . 19
5.2.1 Read Bit . 19
5.2.2 Write Bit . 20
5.2.3 Copy Bit . 20
5.2.4 Compare Bits . 21
5.2.5 Copy Bits . 21

Page 2 of 237

Contents

5.2.6 Fill Bits . 22
5.2.7 Swap Bits . 22
5.2.8 Count Bits . 23

6 Peripheral Functions . 24
6.1 General Purpose Inputs/Outputs (GPIOs) . 24

6.1.1 Configuration . 24
6.1.1.1 Outputs . 24
6.1.1.2 Inputs . 24

6.1.2 Basic Port Functions . 25
6.1.2.1 Set GPIOs to Logical Level . 25
6.1.2.2 Toggle GPIOs . 25
6.1.2.3 Waveform Generation . 25
6.1.2.4 Read GPIOs . 26

6.1.3 Higher Level Port Functions . 26
6.1.3.1 Send Data in Wiegand Format . 26
6.1.3.2 Send Data in Omron Format . 28

6.2 Beeper . 29
6.2.1 Duration controlled by function . 29
6.2.2 Duration controlled by App . 29

6.3 LEDs . 30
6.3.1 General Purpose LED Functions . 30

6.3.1.1 Initialization . 30
6.3.1.2 Set LEDs On/Off . 30
6.3.1.3 Toggle LEDs . 30
6.3.1.4 Blink LEDs . 31

6.3.2 Diagnostic LED . 31
6.3.2.1 Set Diagnostic LED On/Off . 31
6.3.2.2 Toggle Diagnostic LED . 31
6.3.2.3 Get LED State . 32

7 Conversion Functions . 33
7.1 Hexadecimal ASCII to Binary . 33

7.1.1 Scan Hexadecimal Character . 33
7.1.2 Scan Hexadecimal String . 33

7.2 Binary to Hexadecimal ASCII . 34
8 I2C Functions . 35

8.1 Initialization/Deinitialization . 35
8.1.1 I2CInit . 35
8.1.2 I2CDeInit . 35
8.1.3 Examples . 35

8.2 Communication (Master) . 35
8.2.1 I2CMasterStart . 35
8.2.2 I2CMasterStop . 36
8.2.3 I2CMasterTransmitByte . 36
8.2.4 I2CMasterReceiveByte . 36
8.2.5 I2CMasterBeginWrite . 36
8.2.6 I2CMasterBeginRead . 36
8.2.7 I2CMasterSetAck . 37
8.2.8 Examples . 37

8.3 Communication (Slave) . 37
8.3.1 Slave to Master . 38
8.3.2 Master to Slave . 38

Page 3 of 237

Contents

8.3.3 Examples . 38
9 SPI Functions . 40

9.1 Slave Mode . 40
9.1.1 Timing . 40
9.1.2 Communication Protocol . 41

9.1.2.1 Master to Slave . 41
9.1.2.2 Slave to Master . 41
9.1.2.3 Example of a SPI Host Implementation 41

9.2 Initialization/Deinitialization . 42
9.2.1 SPIInit . 42
9.2.2 SPIDeInit . 43

9.3 Communication . 43
9.3.1 SPIMasterBeginTransfer . 43
9.3.2 SPIMasterEndTransfer . 44
9.3.3 SPITransceive . 44
9.3.4 SPITransmit . 44
9.3.5 SPIReceive . 44

9.4 Examples . 45
10 RF Functions . 46

10.1 SearchTag . 46
10.2 SetRFOff . 46
10.3 SetTagTypes . 46

10.3.1 Supported Types of LF Tags (125 kHz - 134.2 kHz) 47
10.3.2 Supported Types of HF Tags (13.56 MHz, Bluetooth) 48

10.4 GetTagTypes . 48
10.5 GetSupportedTagTypes . 48

11 EM4x02-Specific Transponder Operations . 50
11.1 Function . 50

11.1.1 EM4102_GetTagInfo . 50
12 HITAG 1- and HITAG S-Specific Transponder Operations . 51

12.1 Read/Write Data . 51
12.1.1 Hitag1S_ReadPage . 51
12.1.2 Hitag1S_WritePage . 51
12.1.3 Hitag1S_ReadBlock . 52
12.1.4 Hitag1S_WriteBlock . 52

12.2 Hitag1S_Halt . 52
13 HITAG 2-Specific Transponder Operations . 54

13.1 Read/Write Data . 54
13.1.1 Hitag2_ReadPage . 54
13.1.2 Hitag2_WritePage . 54
13.1.3 Hitag2_SetPassword . 55

13.2 Hitag2_Halt . 55
14 EM4x50-Specific Transponder Operations . 56

14.1 Functions . 56
14.1.1 EM4150_Login . 56
14.1.2 EM4150_ReadWord . 56
14.1.3 EM4150_WriteWord . 56
14.1.4 EM4150_WritePassword . 57
14.1.5 EM4150_GetTagInfo . 57

Page 4 of 237

Contents

15 EM4305-Specific Transponder Operations . 58
15.1 Functions . 58

15.1.1 EM4305_Begin . 58
15.1.2 EM4305_Read . 59
15.1.3 EM4305_Write . 59
15.1.4 EM4305_Login . 59
15.1.5 EM4305_Protect . 59
15.1.6 EM4305_Disable . 60

16 AT55xx-Specific Transponder Operations . 61
16.1 Control Functions . 61

16.1.1 AT55_Begin . 61
16.2 Read Data . 61

16.2.1 AT55_ReadBlock . 62
16.2.2 AT55_ReadBlockProtected . 62

16.3 Write Data . 62
16.3.1 AT55_WriteBlock . 62
16.3.2 AT55_WriteBlockProtected . 63
16.3.3 AT55_WriteBlockAndLock . 63
16.3.4 AT55_WriteBlockProtectedAndLock . 63

17 TILF (TIRIS) Functions . 64
17.1 Search Function . 64

17.1.1 TILF_SearchTag . 64
17.2 Single-Page Read/Write Function . 64

17.2.1 TILF_ChargeOnlyRead . 64
17.2.2 TILF_ChargeOnlyReadLo . 65
17.2.3 TILF_SPProgramPage . 65
17.2.4 TILF_SPProgramPageLo . 65

17.3 Multi-Page Read/Write Function . 66
17.3.1 TILF_MPGeneralReadPage . 66
17.3.2 TILF_MPSelectiveReadPage . 66
17.3.3 TILF_MPProgramPage . 66
17.3.4 TILF_MPSelectiveProgramPage . 66
17.3.5 TILF_MPLockPage . 67
17.3.6 TILF_MPSelectiveLockPage . 67
17.3.7 TILF_MPGeneralReadPageLo . 67
17.3.8 TILF_MPSelectiveReadPageLo . 68
17.3.9 TILF_MPProgramPageLo . 68
17.3.10TILF_MPSelectiveProgramPageLo . 68
17.3.11TILF_MPLockPageLo . 69
17.3.12TILF_MPSelectiveLockPageLo . 69

17.4 Multi-Usage Read/Write Function . 69
17.4.1 TILF_MUGeneralReadPage . 69
17.4.2 TILF_MUSelectiveReadPage . 70
17.4.3 TILF_MUSpecialReadPage . 70
17.4.4 TILF_MUProgramPage . 70
17.4.5 TILF_MUSelectiveProgramPage . 71
17.4.6 TILF_MUSpecialProgramPage . 71
17.4.7 TILF_MULockPage . 72
17.4.8 TILF_MUSelectiveLockPage . 72
17.4.9 TILF_MUSpecialLockPage . 72

Page 5 of 237

Contents

18 ISO14443 Transponder Operations . 73
18.1 ISO14443A . 73

18.1.1 Get ATQA . 73
18.1.2 Get SAK . 73
18.1.3 Get ATS . 73

18.2 ISO14443B . 74
18.2.1 Get ATQB . 74
18.2.2 Get Answer to ATTRIB . 74

18.3 Check Presence . 75
18.4 ISO14443-3 Transparent Data Exchange . 75
18.5 ISO14443-4 Transparent Data Exchange . 76
18.6 Multiple Tag Handling . 76

18.6.1 Search for Transponders . 77
18.6.2 Select Transponder . 77

19 MIFARE Classic Specific Transponder Operations . 78
19.1 Login . 79
19.2 Read/Write Data . 80

19.2.1 Read Data Block . 80
19.2.2 Write Data Block . 80

19.3 Handling of Value Blocks . 81
19.3.1 Read Value Block . 81
19.3.2 Write Value Block . 81
19.3.3 Increment Value Block . 81
19.3.4 Decrement Value Block . 82
19.3.5 Copy Value Block . 82

20 MIFARE Plus Specific Transponder Operations . 83
20.1 Personalisation . 83

20.1.1 Write Personalisation . 83
20.1.2 Commit Personalisation . 84

20.2 Authenticate AES . 84
20.3 Security Level 3 . 85

20.3.1 Read/Write Data . 85
20.3.1.1 Read Data Block . 85
20.3.1.2 Write Data Block . 85

20.3.2 Handling of Value Blocks . 86
20.3.2.1 Read Value Block . 86
20.3.2.2 Write Value Block . 86
20.3.2.3 Increment Value Block . 86
20.3.2.4 Decrement Value Block . 87
20.3.2.5 Copy Value Block . 87

21 MIFARE Ultralight/Ultralight C/Ultralight EV1 Specific Transponder Operations 88
21.1 Authentication (Ultralight C only) . 88

21.1.1 Authentication with given Key . 88
21.1.2 Authentication using SAM Card . 89

21.2 Write Key from SAM to Transponder Key Storage Area . 89
21.3 Read/Write Data . 90

21.3.1 Read Page . 90
21.3.2 Write Page . 90

21.4 Mifare Ultralight EV1 . 91
21.4.1 Fast Read . 91
21.4.2 Increment Counter . 91

Page 6 of 237

Contents

21.4.3 Read Counter . 91
21.4.4 Read ECC Signature . 92
21.4.5 Get Transponder Information . 92
21.4.6 Password Authentication . 92
21.4.7 Check Tearing Event . 93

22 NTAG Specific Transponder Operations . 94
22.1 Read/Write Data . 94

22.1.1 Read Page . 94
22.1.2 Write Page . 94
22.1.3 Fast Read . 95

22.2 Miscellaneous functions . 95
22.2.1 Read Counter . 95
22.2.2 Read ECC Signature . 95
22.2.3 Get Transponder Information . 96
22.2.4 Password Authentication . 96
22.2.5 Select Sector . 96

23 DESFire Specific Transponder Operations . 97
23.1 Security Related Operations . 98

23.1.1 Authenticate . 98
23.1.2 Get Key Version . 101
23.1.3 Get Key Settings . 101
23.1.4 Change Key Settings . 103
23.1.5 Change Key . 104

23.2 Transponder Related Operations . 106
23.2.1 Create Application . 106
23.2.2 Delete Application . 107
23.2.3 Get Application IDs . 107
23.2.4 Select Application . 108
23.2.5 Format Transponder . 109
23.2.6 Get Transponder Information . 109
23.2.7 Get Available Memory Space . 110
23.2.8 Get Card UID . 111
23.2.9 Set Transponder Configuration . 111

23.2.9.1 Disable Format Tag . 111
23.2.9.2 Enable Random ID . 112
23.2.9.3 Set Default Key . 112
23.2.9.4 Set User-defined Answer To Select (ATS) 113

23.3 Application Related Operations . 113
23.3.1 Create File . 113
23.3.2 Delete File . 116
23.3.3 Get File IDs . 117
23.3.4 Get File Settings . 117
23.3.5 Change File Settings . 119

23.4 File Related Operations . 119
23.4.1 Data Files . 119

23.4.1.1 Read Data . 119
23.4.1.2 Write Data . 121

23.4.2 Value Files . 123
23.4.2.1 Get Value . 123
23.4.2.2 Debit . 124
23.4.2.3 Credit . 125

Page 7 of 237

Contents

23.4.2.4 Limited Credit . 125
23.4.3 Record Files . 126

23.4.3.1 Read Records . 126
23.4.3.2 Write Record . 127
23.4.3.3 Clear Record File . 128

23.4.4 Commit Transaction . 128
23.4.5 Abort Transaction . 129

24 SAM AV1/AV2 . 130
24.1 Host Authentication . 130
24.2 Query Key Entry . 130

25 ISO15693 Specific Transponder Operations . 132
25.1 Generic ISO15693 Command . 132

25.1.1 Example of creating a Standard ISO15693 Command 132
25.2 Gather Tag Specific Information . 133

25.2.1 Get System Information . 133
25.2.2 Get Tag Type . 134

25.2.2.1 Get Tag Type From UID . 134
25.2.2.2 Get Tag Type From System Information 135

25.3 Read/Write Data . 137
25.3.1 Read Single Block . 137
25.3.2 Write Single Block . 137

26 LEGIC-Specific Functions . 139
26.1 Direct Access of LEGIC Chip . 139

26.1.1 SM4X00_GenericRaw . 139
26.1.2 SM4X00_Generic . 140
26.1.3 SM4X00_StartBootloader . 140
26.1.4 SM4X00_EraseFlash . 140
26.1.5 SM4X00_ProgramBlock . 141

27 iCLASS Specific Transponder Operations . 142
27.1 Read PAC Bits . 142

27.1.1 Example . 142
27.2 Select Page . 143
27.3 Authenticate . 143
27.4 Read Data Block . 144
27.5 Write Data Block . 144

28 FeliCa . 146
28.1 Polling . 146
28.2 Request System Code . 146
28.3 Request Service . 147
28.4 Read Without Encryption . 147
28.5 Write Without Encryption . 148
28.6 Transparent Data Exchange . 149

29 Topaz Specific Transponder Operations . 150
29.1 Read UID . 150
29.2 Read Data . 150

29.2.1 Read Single Byte . 150
29.2.2 Read All Transponder Data . 150

29.3 Write Data . 151
29.3.1 Write Single Byte With Erase . 151
29.3.2 Write Single Byte Without Erase . 151

Page 8 of 237

Contents

30 CTS Specific Transponder Operations . 153
30.1 Read Block Data . 153
30.2 Write Block Data . 153
30.3 Update Block Data . 154

31 SRX Specific Transponder Operations . 155
31.1 Read Block Data . 155
31.2 Write Block Data . 155

32 Simple NDEF Exchange Protocol (SNEP) . 156
32.1 Initialize SNEP Service . 156
32.2 Get Connection State . 156
32.3 Query Message FIFO . 157
32.4 Transmit NDEF Message . 158

32.4.1 Begin Message . 158
32.4.2 Send Message Fragment . 158
32.4.3 Example . 159

32.5 Receive NDEF Message . 161
32.5.1 Test Message . 161
32.5.2 Receive Message Fragment . 161
32.5.3 Example . 162

33 BLE Functions . 164
33.1 GATT Server Definition . 165
33.2 BLEPresetConfig . 166
33.3 BLEPresetUserData . 167
33.4 BLEInit . 169
33.5 BLECheckEvent . 170
33.6 BLEGetAddress . 173
33.7 BLEGetVersion . 173
33.8 BLEGetEnvironment . 174
33.9 BLEGetGattServerAttributeValue . 175
33.10BLESetGattServerAttributeValue . 175
33.11BLERequestRssi . 176
33.12BLERequestEndpointClose . 176
33.13BLEGetGattServerCharacteristicStatus . 176
33.14BLEFindGattServerAttribute . 177
33.15BLEDiscover . 177
33.16BLECheckDiscoveredString . 179
33.17BLEConnectToDevice . 180
33.18BLEDisconnectFromDevice . 181
33.19BLEGattGetAttribute . 181
33.20BLEGattGetValue . 182
33.21BLEGattSetValue . 184
33.22BLECommand . 185
33.23BLESecurity . 187
33.24BLESecuritySetOob . 190
33.25BLESecurityUseScOob . 191
33.26BLESetStreamingMode . 192
33.27BLESetStreamingUUID . 193

34 Contact Card Operations . 194
34.1 Microprocessor Cards . 194

34.1.1 Query Card Slot Status . 194
34.1.2 Card Activation . 195

Page 9 of 237

Contents

34.1.3 Card Deactivation . 196
34.1.4 Set Communication Settings . 196
34.1.5 Transparent Data Transmission . 199
34.1.6 Exchange Of APDUs . 199
34.1.7 Examples . 201

34.1.7.1 PPS Example . 201
34.1.7.2 Communication Example . 201

34.2 SLE Memory Cards . 203
34.2.1 Get ATR . 203
34.2.2 Read Main Memory . 203
34.2.3 Write Main Memory . 204
34.2.4 Read Security Memory . 204
34.2.5 Write Security Memory . 204
34.2.6 Read Protection Memory . 205
34.2.7 Write Protection Memory . 205
34.2.8 Compare Verification Data . 205

34.3 I2C Memory Cards . 206
34.3.1 Read Memory . 206
34.3.2 Write Memory . 206

35 Cryptographic Operations . 208
35.1 Initialization . 210
35.2 Encrypt . 210
35.3 Decrypt . 211
35.4 Reset Init Vector . 211

36 Storage Functions . 212
36.1 Management Functions . 212

36.1.1 FSMount . 212
36.1.2 FSFormat . 213

36.2 File Functions . 213
36.2.1 FSOpen . 213
36.2.2 FSClose . 214
36.2.3 FSCloseAll . 215
36.2.4 FSSeek . 215
36.2.5 FSTell . 215
36.2.6 FSReadBytes . 216
36.2.7 FSWriteBytes . 216

36.3 Directory Functions . 217
36.3.1 FSFindFirst . 217
36.3.2 FSFindNext . 217
36.3.3 FSDelete . 217
36.3.4 FSRename . 218

36.4 Miscellaneous Functions . 218
36.4.1 FSGetStorageInfo . 218

36.5 Examples . 219
37 System Parameters . 221

37.1 TLV Format . 221
37.2 Manifest . 221
37.3 Available Parameters . 223

38 System Errors . 226

Page 10 of 237

Contents

39 Runtime Library . 228
39.1 Timer Functions . 228

39.1.1 StartTimer . 228
39.1.2 StopTimer . 228
39.1.3 TestTimer . 229

39.2 Host Communication . 229
39.2.1 SetHostChannel . 229
39.2.2 HostTestByte . 229
39.2.3 HostReadByte . 229
39.2.4 HostTestChar . 230
39.2.5 HostReadChar . 230
39.2.6 HostWriteByte . 230
39.2.7 HostWriteChar . 230
39.2.8 HostWriteString . 231
39.2.9 HostWriteRadix . 231
39.2.10HostWriteBin . 231
39.2.11HostWriteDec . 232
39.2.12HostWriteHex . 232
39.2.13HostWriteVersion . 232

39.3 Beep Functions . 232
39.3.1 SetVolume . 233
39.3.2 GetVolume . 233
39.3.3 BeepLow . 233
39.3.4 BeepHigh . 233

39.4 Compatibility to TWN3 . 233
39.4.1 ConvertTagTypeToTWN3 . 234

39.5 Simple Protocol . 234
39.5.1 SimpleProtoInit . 234
39.5.2 SimpleProtoTestCommand . 235
39.5.3 SimpleProtoExecuteCommand . 235
39.5.4 SimpleProtoSendResponse . 235

40 Compatibility of TWN4 MultiTech Mini Reader . 236
41 Disclaimer . 237

Page 11 of 237

1 Definitions and Function Prototypes

1 Definitions and Function Prototypes

All definitions and function prototypes can be found in the header file twn4.sys.h, which is located in the
folder /Tools/sys of the TWN4 Developer Pack.

Page 12 of 237

2 System Functions

2 System Functions

2.1 SysCall

This function is useful for writing interfaces, which do a remote call of a system function,

bool SysCall(TEnvSysCall *Env);

Parameters:

TEnvSysCall *Env Pointer to a structure which specifies parameters of the functions to be
called.

Return: If the function has been called the return value is true, otherwise it is false.
In this case the specified function does not exist.

2.2 Reset

This functions is performing a reset of the firmware, which also includes a restart of the currently running
App.

void Reset(void);

Parameters: None.

Return: None.

2.3 StartBootloader

This function is performing a manual call of the boot loader. As a consequence the execution of the App is
stopped.

void StartBootloader(void);

Parameters: None.

Return: None.

2.4 GetSysTicks

Retrieve number of system ticks, specified in multiple of 1 milliseconds, since startup of the firmware.

unsigned long GetSysTicks(void);

Page 13 of 237

2 System Functions

Parameters: None.

Return: Number of system ticks since startup of the firmware. The returned value
will restart at 0 after 232 system ticks (around 1193 hours).

2.5 GetVersionString

Retrieve version information. The function generates a ASCII string, terminated by 0.

int GetVersionString(char *VersionString,int MaxLen);

Parameters:

char *VersionString Pointer to an array of characters, which will receive the version information.

int MaxLen Maximum number of characters, the specified byte array can receive exclud-
ing the 0-termination.

Return: Length of the returned string excluding the 0-termination.

Example:

// This sample demonstrates, how to send the version string
// to the host
void WriteChar(char Char)
{

HostWriteByte(Char);
}
void WriteString(const char *String)
{

while (*String)
WriteChar(*String++);

}
void WriteVersion(void)
{

char Version[30+1];
GetVersionString(Version,sizeof(Version)-1);
WriteString(Version);

}

2.6 GetUSBType

Retrieve type of USB communication. This could by keyboard emulation or CDC emulation or some other
value for future or custom implementations.

int GetUSBType(void);

Page 14 of 237

2 System Functions

Parameters: None.

Return: USBTYPE_NONE: No USB stack,

USBTYPE_CDC: CDC device (virtual COM port),

USBTYPE_KEYBOARD: HID keyboard,

USBTYPE_CCID_HID: CCID + HID (compound device),

USBTYPE_REPORTS: CCID + HID reports,

USBTYPE_CCID_CDC: CCID + CDC (compound device),

USBTYPE_CCID: CCID

2.7 GetDeviceType

Retrieve type of underlying TWN4 hardware.

int GetDeviceType(void);

Parameters: None.

Return: DEVTYPE_LEGICNFC: TWN4 LEGIC, DEVTYPE_MIFARENFC: TWN4 MIFARE

2.8 Sleep

The device enters the sleep state for a specified time. During sleep state, the device reduces the current
consumption to a value, which depends on the mode of sleep.

int Sleep(unsigned long Ticks,unsigned long Flags)

Parameters:

unsigned long Ticks Time, specified in milliseconds, the device should enter the sleep state.

unsigned long Flags Events, which cause the function immediately to return. The parameter is a
bitwise OR of all events to be handled.

Return: See table return values below

Definition Value Description

SLEEPMODE_SLEEP 0x0000 During sleep, device still can be waked up via communication port or
LPCD event. In this mode, the device has higher current consumption.

SLEEPMODE_STOP 0x0100 During stop, device still can be waked up via communication port (not
USB). In this mode, the device has lowest current consumption.

Notes:

• For details of current consumption, see respective hardware documentation

• TWN4 optionally allows to operate a watchdog timer. The watchdog timer is reset in SLEEPMODE_SLEEP
but not in SLEEPMODE_STOP. For this reason and if the watchdog timer is activated, the maximum time
in SLEEPMODE_STOP is 2 seconds (2000 ticks).

• Entering sleep mode is not allowed if the reader supports NFC P2P (HFTAG_NFCP2P is set). Please
ensure that NFC P2P is disabled before issuing this command.

Page 15 of 237

2 System Functions

The sleep mode can optionally be cancelled by events. The events are bitwise or-combined and are
specified as parameters in the call of the function Sleep. Following events are defined:

Definition Value Description

WAKEUP_BY_USB_MSK 0x01 Cancel sleep mode, if USB received at least one byte.

WAKEUP_BY_COM1_MSK 0x02 Cancel sleep mode, if COM1 received at least one byte.

WAKEUP_BY_COM2_MSK 0x04 Cancel sleep mode, if COM2 received at least one byte.

WAKEUP_BY_TIMEOUT_MSK 0x10 Cancel sleep mode after specified period of time.

WAKEUP_BY_LPCD_MSK 0x20 Cancel sleep mode, if a transponder card was detected.

(Supported by TWN4 MultiTech Nano with HF frontend NXP
PN5180 only)

Depending on the source, which woke up the device, Sleep returns following values:

Definition Value Description

WAKEUP_SOURCE_USB 0 USB input channel received at least one byte.

WAKEUP_SOURCE_COM1 1 The input channel of COM1 received at least one byte.

WAKEUP_SOURCE_COM2 2 The input channel of COM2 received at least one byte.

WAKEUP_SOURCE_TIMEOUT 4 Sleep time ran out.

WAKEUP_SOURCE_LPCD 5 The presence of a transponder card was detected.

(Supported by TWN4 MultiTech Nano with HF frontend NXP
PN5180 only)

2.9 GetDeviceUID

This function returns a UID, which is unique to the specific TWN4 device.

void GetDeviceUID(byte *UID)

Parameters:

byte *UID Pointer to an array of bytes, which receives 12 bytes. These 12 bytes repre-
sent the UID of the device.

Return: None.

2.10 SetParameters

This function allows to set parameters, which influence the behaviour of the TWN4 firmware. See also
chapter System Parameters for a description of the TLV list and all available paramaters.

bool SetParameters(const byte *TLV,int ByteCount)

Page 16 of 237

2 System Functions

Parameters:

const byte *TLV Pointer to an array of bytes, which contains the TLV list.

int ByteCount Length counted in bytes, the TLV list contains.

Return: The function returns true, if the parameters was set to the new value. Oth-
erwise the function returns false.

Example:

// This sample demonstrates a call of function SetParameters.
const byte TLVBytes[] =
{

ICLASS_READMODE, 1, ICLASS_READMODE_PAC, // Read PAC from iClass.
INDITAG_READMODE, 1, INDITAG_READMODE_2, // Set Inditag readmode 2
TLV_END // End of TLV

};

int main(void)
{

// ...
SetParameters(TLVBytes,sizeof(TLVBytes));
// ...

}

2.11 GetLastError

This function allows to read the last error code, which was generated by any system function. For a list of
available error code see chapter System Errors.

unsigned int GetLastError(void)

Parameters: None.

Return: The error code.

Page 17 of 237

3 Interrupt System

3 Interrupt System

TWN4 allows to install interrupt handlers on certain events such as character reception or an active edge
detected on GPIOs.

Notes:

• Take care of the execution time of the interrupt handler in order to keep the system viable.

• The execution time of the App is roughly one 1µs per machine command. This means, the execution
time of a installed sys tick handler (1000 events per second) is theoretically limited to 1000 machine
commands (1.000.000 commands/s / 1.000 ticks/s = 1.000 commands/tick). Practically spoken, this
number must be kept much lower to keep the system running.

• Blocking behavior in a interrupt handler (such as waiting for reception of a character) can lead to
unpredictable system behavior!

• A single C-statement is - depending on the complexity of the statement - compiled into several
machine commands, which reduces the number of of C-statements within a interrupt handler even
more. An exact value cannot be specified.

For a actual implementations see following source codes:

• App_INTD101_Interrupt_Demo.c

• App_GIOD100_Interrupt_Demo.c

in the folder Apps\Samples\Interrupt\ of the development pack.

3.1 SetInterruptHandler

Installs or uninstalls an interrupt handler for a specific event. The interrupt handler requires following
prototype:

void InterruptHandler(void);

The function SetInterruptHandler is defined as follows:

bool SetInterruptHandler(TInterruptHandler InterruptHandler,int IntNo)

Parameters:

InterruptHandler Address of interrupt handler or NULL to uninstall the handler.

int IntNo Number of interrupt in question, see table below.

Return: The function returns true, if parameter IntNo is valid. Otherwise the func-
tion returns false.

Page 18 of 237

3 Interrupt System

Following possible values for int IntNo:

Definition Value Description

INTNO_SYSTICK 0 Systick interrupt, which occurs every 1 millisecond

INTNO_USB_BYTES_TRANSMITTED 1 One or more bytes where sent via USB

INTNO_USB_BYTES_RECEIVED 2 One or more bytes where received via USB

INTNO_COM1_BYTE_TRANSMITTED 3 One byte was sent via COM1

INTNO_COM1_BYTE_RECEIVED 4 One byte was received via COM1

INTNO_COM2_BYTE_TRANSMITTED 5 One byte was sent via COM2

INTNO_COM2_BYTE_RECEIVED 6 One byte was received via COM2

INTNO_GPIO0_TRIGGERED 7 An edge was detected on GPIO0

INTNO_GPIO1_TRIGGERED 8 An edge was detected on GPIO1

INTNO_GPIO2_TRIGGERED 9 An edge was detected on GPIO2

INTNO_GPIO3_TRIGGERED 10 An edge was detected on GPIO3

INTNO_GPIO4_TRIGGERED 11 An edge was detected on GPIO4

INTNO_GPIO5_TRIGGERED 12 An edge was detected on GPIO5

INTNO_GPIO6_TRIGGERED 13 An edge was detected on GPIO6

INTNO_GPIO7_TRIGGERED 14 An edge was detected on GPIO7

Page 19 of 237

3 Interrupt System

3.2 GPIOConfigureInterrupt

bool GPIOConfigureInterrupt(int GPIOBits,bool Enable,int Edge)

Parameters:

int GPIOBits Specify the GPIOs to be configured. Several GPIOs can be configured si-
multaneously by using the bitwise or-operator (|). Use the predefined con-
stants GPIO0 through GPIO7 for specifying the GPIOs.

bool Enable Enable (true) or disable (IntNo) interrupts.

int Edge Specify edge on which a interrupt should be generated (see table below).

Return: The function returns true, if parameter IntNo is valid. Otherwise the func-
tion returns false.

Definition Value Description

TRIGGER_RISING 0 Generate an interrupt on the rising edge.

TRIGGER_FALLING 1 Generate an interrupt on the falling edge.

TRIGGER_RISING_FALLING 2 Generate an interrupt on the rising or falling edge.

Page 20 of 237

4 I/O Functions

4 I/O Functions

4.1 Configuration

4.1.1 Set COM-Port Parameters

This function can be used to configure the asynchronous serial communication ports COM1 and COM2.

bool SetCOMParameters
(
int Channel,
TCOMParameters* COMParameters
);

Parameters:

int Channel Specify the communication port which shall be configured. Use one of the
predefined constants CHANNEL_COM1 or CHANNEL_COM2.

TCOMParameters*
COMParameters

Reference to the structure that holds the communication parameters. See
the description of TCOMParameters for details.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Members Length
(Bits)

Description

unsigned long BaudRate 32 This member holds the baud rate.

byte WordLength 8 This member holds the word-length in bits. Use the prede-
fined constant COM_WORDLENGTH_8.

byte Parity 8 This member holds the type of parity to be used. Use one of
the predefined constants COM_PARITY_NONE, COM_PARITY_ODD
or COM_PARITY_EVEN.

byte StopBits 8 This member holds the number of stop bits. Use one of the
predefined constants COM_STOPBITS_0_5, COM_STOPBITS_1,
COM_STOPBITS_1_5 or COM_STOPBITS_2.

byte FlowControl 8 This member holds the type of flow control to be used. Use
the predefined constant COM_FLOWCONTROL_NONE.

Table 4.1: Definition of TCOMParameters

Page 21 of 237

4 I/O Functions

4.1.2 Get USB Device State

This function returns the functional state of the USB-controller in case the reader is running as USB-device.

int GetUSBDeviceState(void);

Parameters: None.

Return: Depending on the functional state, the return value is one of the prede-
fined constants USB_DEVICE_STATE_NOTINIT, USB_DEVICE_STATE_DEFAULT,
USB_DEVICE_STATE_ADDRESSED, USB_DEVICE_STATE_CONFIGURED or
USB_DEVICE_STATE_SUSPENDED.

4.1.3 Get Host Channel

This function returns the channel, which is actually configured for host communication.

int GetHostChannel(void);

Parameters: None.

Return: The return value is one of the predefined constants CHANNEL_NONE,
CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2, CHANNEL_I2C CHANNEL_SPI or
CHANNEL_HOST. Note that CHANNEL_HOST is only available on TWN4 Mini
Reader.

Note: TWN4 Mini Reader has connected the internal communication lines of USB, COM1 and SPI to one
physical port. This means, only one of these communication channels can be active at the same time. The
resulting communication channel is CHANNEL_HOST.

4.2 Miscellaneous Functions

4.2.1 Wake Up Host

This function allows to remotely wake up a host, which is connected via USB. This function is supported
by USB keyboard only.

void USBRemoteWakeup(void);

Parameters: None.

Return: None.

4.3 Data I/O

4.3.1 Query I/O Buffer Size

Use this function to retrieve the input/output buffer size of a specific communication channel.

Page 22 of 237

4 I/O Functions

int GetBufferSize
(
int Channel,
int Dir
);

Parameters:

int Channel Specify the communication channel. Use one of the predefined con-
stants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2, CHANNEL_CCID_DATA,
CHANNEL_CCID_CTRL, CHANNEL_I2C, CHANNEL_RNG, CHANNEL_SPI or
CHANNEL_HOST. Note that CHANNEL_HOST is only available on TWN4
Mini Reader.

int Dir Specify the direction. Use one of the predefined constants DIR_OUT or
DIR_IN.

Return: The buffer size in bytes.

4.3.2 Get I/O Buffer Byte Count

Use this function to retrieve the number of bytes that are actually stored in the respective I/O buffer. In
case of querying the output direction, the functions returns the number of bytes that have not been sent
yet, in case of the input direction the number of available bytes that can be read is returned.

int GetByteCount
(
int Channel,
int Dir
);

Parameters:

int Channel Specify the communication channel. Use one of the predefined con-
stants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2, CHANNEL_CCID_DATA,
CHANNEL_CCID_CTRL, CHANNEL_I2C, CHANNEL_RNG, CHANNEL_SPI or
CHANNEL_HOST. Note that CHANNEL_HOST is only available on TWN4
Mini Reader.

int Dir Specify the direction. Use one of the predefined constants DIR_OUT or
DIR_IN.

Return: The number of bytes that are stored in the buffer.

4.3.3 Test Empty

Check if there are any bytes in the specified I/O buffer.

bool TestEmpty
(
int Channel,
int Dir
);

Page 23 of 237

4 I/O Functions

Parameters:

int Channel Specify the communication channel. Use one of the predefined con-
stants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2, CHANNEL_CCID_DATA,
CHANNEL_CCID_CTRL, CHANNEL_I2C, CHANNEL_RNG, CHANNEL_SPI or
CHANNEL_HOST. Note that CHANNEL_HOST is only available on TWN4
Mini Reader.

int Dir Specify the direction. Use one of the predefined constants DIR_OUT or
DIR_IN.

Return: If the buffer is empty, the return value is true, otherwise it is false.

4.3.4 Test Full

Check if the specified I/O buffer can receive any further data.

bool TestFull
(
int Channel,
int Dir
);

Parameters:

int Channel Specify the communication channel. Use one of the predefined con-
stants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2, CHANNEL_CCID_DATA,
CHANNEL_CCID_CTRL, CHANNEL_I2C, CHANNEL_RNG, CHANNEL_SPI or
CHANNEL_HOST. Note that CHANNEL_HOST is only available on TWN4
Mini Reader.

int Dir Specify the direction. Use one of the predefined constants DIR_OUT or
DIR_IN.

Return: If the buffer is full, the return value is true, otherwise it is false.

4.3.5 Send Byte

Use this function to send one byte through a specific communication channel. If the respective output
buffer is completely occupied, the function blocks until there is enough space.

void WriteByte
(
int Channel,
byte Byte
);

Page 24 of 237

4 I/O Functions

Parameters:

int Channel Specify the communication channel. Use one of the predefined con-
stants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2, CHANNEL_CCID_DATA,
CHANNEL_CCID_CTRL, CHANNEL_I2C, CHANNEL_SPI or CHANNEL_HOST. Note that
CHANNEL_HOST is only available on TWN4 Mini Reader.

byte Byte The byte to be sent.

Return: None.

4.3.6 Send Multiple Bytes

Use this function to send multiple bytes through a specific communication channel. If there is not enough
space in the respective output buffer, the function sends the number of bytes that fit into the buffer and
returns this value.

int WriteBytes
(
int Channel,
const byte* Bytes,
int ByteCount
);

Parameters:

int Channel Specify the communication channel. Use one of the predefined con-
stants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2, CHANNEL_CCID_DATA,
CHANNEL_CCID_CTRL, CHANNEL_I2C, CHANNEL_SPI or CHANNEL_HOST. Note that
CHANNEL_HOST is only available on TWN4 Mini Reader.

const byte* Bytes The bytes to be sent.

Return: Number of bytes sent.

4.3.7 Read Byte

Use this function to read a byte from the input buffer of a specific communication channel. If there is no
byte available, the function blocks until there is one.

byte ReadByte
(
int Channel
);

Parameters:

int Channel Specify the communication channel. Use one of the predefined con-
stants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2, CHANNEL_CCID_DATA,
CHANNEL_CCID_CTRL, CHANNEL_I2C, CHANNEL_RNG, CHANNEL_SPI or
CHANNEL_HOST. Note that CHANNEL_HOST is only available on TWN4
Mini Reader.

Return: The byte which was read from the input buffer.

Page 25 of 237

4 I/O Functions

4.3.8 Read Multiple Bytes

Use this function to read a desired number of bytes from the input buffer of a specific communication
channel. If there is less data available than desired, the function reads the available number of bytes.

int ReadBytes
(
int Channel,
byte* Bytes,
int ByteCount
);

Parameters:

int Channel Specify the communication channel. Use one of the predefined con-
stants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2, CHANNEL_CCID_DATA,
CHANNEL_CCID_CTRL, CHANNEL_I2C, CHANNEL_RNG, CHANNEL_SPI or
CHANNEL_HOST. Note that CHANNEL_HOST is only available on TWN4
Mini Reader.

byte* Bytes The received data is stored in this buffer.

int ByteCount Specify the number of bytes to be read.

Return: The byte which was read from the input buffer.

Page 26 of 237

5 Memory Functions

5 Memory Functions

5.1 Byte Operations

5.1.1 Compare Bytes

Compare two byte arrays.

bool CompBytes
(
const byte* Data1,
const byte* Data2,
int ByteCount
);

Parameters:

const byte* Data1 Reference to an array of bytes.

const byte* Data1 Reference to an array of bytes.

int ByteCount Number of bytes (beginning from index 0) to be compared.

Return: If the two arrays are identical, the return value is true, otherwise it is false.

5.1.2 Copy Bytes

Copy bytes from a source to a destination. Source and destination may be identical and the source section
may overlap the destination. Depending on that, the correct method for copying will be chosen.

void CopyBytes
(
byte* DestBytes,
const byte* SourceBytes,
int ByteCount
);

Parameters:

byte* DestBytes Reference to an array of bytes which is the destination of the copy operation.

const byte* SourceBytes Reference to an array of bytes which is the source of the copy operation.

int ByteCount Number of bytes to be copied.

Return: None.

Page 27 of 237

5 Memory Functions

5.1.3 Fill Bytes

Fill bytes within a given array with a value.

void FillBytes
(
byte* Dest,
byte Value,
int ByteCount
);

Parameters:

byte* Dest Reference to an array of bytes which is the destination for the operation.

byte Value The byte value with which the array will be filled.

int ByteCount Number of bytes to be filled.

Return: None.

5.1.4 Swap Bytes

Swap the order of bytes within an array.

void SwapBytes
(
byte* Data,
int ByteCount
);

Parameters:

byte* Data Reference to an array of bytes which is the destination for the operation.

int ByteCount Number of bytes to be swapped.

Return: None.

5.2 Bit Operations

Bit operations are working on bit fields. A bit field is represented by an array of bytes. The diagram below
shows how bit operations are interpreting a given bit offset within an array of bytes:

5.2.1 Read Bit

Read the value of one single bit within a bit field.

Page 28 of 237

5 Memory Functions

bool ReadBit
(
const byte* Byte,
int BitNr
);

Parameters:

const byte* Byte Reference to an array of bytes which represents the bit field where one bit
shall be read.

int BitNr Position of the bit within the bit field.

Return: The bit value: true means 1, false means 0.

5.2.2 Write Bit

Set one single bit within a bit field to a given value.

void WriteBit
(
byte* Byte,
int BitNr,
bool Value
);

Parameters:

byte* Byte Reference to an array of bytes which represents the bit field where one bit
shall be written.

int BitNr Position within the bit field, where the bit is to be written.

bool Value The bit value: true means 1, false means 0.

Return: None.

5.2.3 Copy Bit

Copy one single bit from a source to a destination. Source and destination may be identical.

void CopyBit
(
byte* Dest,
int DestBitNr,
const byte* Source,
int SourceBitNr
);

Page 29 of 237

5 Memory Functions

Parameters:

byte* Dest Reference to an array of bytes which is the destination for the operation.

int DestBitNr Position within the destination bit field, where the bit is copied to.

const byte* Source Reference to an array of bytes which is the source for the operation.

int SourceBitNr Position within the source bit field, where the bit is copied from.

Return: None.

5.2.4 Compare Bits

Compare two bit sets.

bool CompBits
(
const byte* Data1,
int Data1StartBit,
const byte* Data2,
int Data2StartBit,
int BitCount
);

Parameters:

const byte* Data1 Reference to an array of bytes which represents a bit field.

int Data1StartBit Start-index (beginning from 0) of the first bit field.

const byte* Data2 Reference to an array of bytes which represents a bit field.

int Data1StartBit Start-index (beginning from 0) of the second bit field.

int BitCount Number of bits to be compared.

Return: If the two bit-sets are identical, the return value is true, otherwise it is false.

5.2.5 Copy Bits

Copy bits from a source to a destination. Source and destination may be identical and the source section
may overlap the destination. Depending on that, the correct method for copying will be chosen.

void CopyBits
(
byte* DestBits,
int StartDestBit,
const byte* SourceBits,
int StartSourceBit,
int BitCount
);

Page 30 of 237

5 Memory Functions

Parameters:

byte* DestBits Reference to an array of bytes which represents a bit field which is the des-
tination of the copy operation.

int StartDestBit First bit within the destination bit field where the bits are copied to.

const byte* SourceBits Reference to an array of bytes which represents a bit field which is the
source of the copy operation.

int StartSourceBit First bit within the source bit field where the bits are copied from.

int BitCount Number of bits to be copied.

Return: None.

5.2.6 Fill Bits

Fill bits within a given bit field with either 0 or 1.

void FillBits
(
byte* Dest,
int StartBit,
bool Value,
int BitCount
);

Parameters:

byte* Dest Reference to an array of bytes which represents a bit field which is the des-
tination for the operation.

int StartBit First bit within the bit field where the bits are filled.

bool Value The bit value: true means 1, false means 0.

int BitCount Number of bits to be filled.

Return: None.

5.2.7 Swap Bits

Swap the order of bits within a bit field.

void SwapBits
(
byte* Data,
int StartBit,
int BitCount
);

Page 31 of 237

5 Memory Functions

Parameters:

byte* Data Reference to an array of bytes which represents a bit field which is the des-
tination for the operation.

int StartBit First bit within the bit field where bits are swapped.

int BitCount Number of bits to be swapped.

Return: None.

5.2.8 Count Bits

Count the number of ones or zeros within a bit field.

int CountBits
(
const byte* Data,
int StartBit,
bool Value,
int BitCount
);

Parameters:

const byte* Data Reference to an array of bytes which represents a bit field.

int StartBit First bit within the bit field where counting shall start.

bool Value The bit value: true means count ones, false means count zeros.

int BitCount Size of the bit field.

Return: Number of counted bits.

Page 32 of 237

6 Peripheral Functions

6 Peripheral Functions

6.1 General Purpose Inputs/Outputs (GPIOs)

6.1.1 Configuration

6.1.1.1 Outputs

Use this function to configure one or several GPIOs as output. Each output can be configured to have an
integrated pull-up or pull-down resistor. The output driver characteristic is either Push-Pull or Open Drain.

void GPIOConfigureOutputs
(
int Bits,
int PullUpDown,
int OutputType
);

Parameters:

int Bits Specify the GPIOs that shall be configured for output. Several GPIOs can
be configured simultaneously by using the bitwise or-operator (|). Use the
predefined constants GPIO0 through GPIO7 for specifying the GPIOs.

int PullUpDown Specify the behaviour of the internal weak pull-up/down resistor. Use
one of the predefined constants GPIO_PUPD_NOPULL, GPIO_PUPD_PULLUP or
GPIO_PUPD_PULLDOWN.

int OutputType Specify the output driver characteristic. Use one the predefined constants
GPIO_OTYPE_PUSHPULL or GPIO_OTYPE_OPENDRAIN.

Return: None.

6.1.1.2 Inputs

Use this function to configure one or several GPIOs as input. Each output can be configured to have an
integrated pull-up or pull-down resistor, alternatively it can be left floating.

void GPIOConfigureInputs
(
int Bits,
int PullUpDown
);

Page 33 of 237

6 Peripheral Functions

Parameters:

int Bits Specify the GPIOs that shall be configured for input. Several GPIOs can
be configured simultaneously by using the bitwise or-operator (|). Use the
predefined constants GPIO0 through GPIO7 for specifying the GPIOs.

int PullUpDown Specify the behaviour of the internal weak pull-up/down resistor. Use
one of the predefined constants GPIO_PUPD_NOPULL, GPIO_PUPD_PULLUP or
GPIO_PUPD_PULLDOWN.

Return: None.

6.1.2 Basic Port Functions

6.1.2.1 Set GPIOs to Logical Level

Use this function to set one or several GPIOs to logical high or low level. The respective ports must have
been configured to output in advance.

void GPIOSetBits(int Bits);
void GPIOClearBits(int Bits);

Parameters:

int Bits Specify the GPIOs that shall be set to a logical level. Several GPIOs can
be handled simultaneously by using the bitwise or-operator (|). Use the
predefined constants GPIO0 through GPIO7 for specifying the GPIOs.

Return: None.

6.1.2.2 Toggle GPIOs

Use this function to toggle the logical level of one or several GPIOs. The respective ports must have been
configured to output in advance.

void GPIOToggleBits
(
int Bits
);

Parameters:

int Bits Specify the GPIOs that shall be toggled. Several GPIOs can be handled
simultaneously by using the bitwise or-operator (|). Use the predefined con-
stants GPIO0 through GPIO7 for specifying the GPIOs.

Return: None.

6.1.2.3 Waveform Generation

Use this function to generate a pulse-width modulated square waveform with constant frequency on one
or several GPIOs. The respective ports must have been configured to output in advance.

Page 34 of 237

6 Peripheral Functions

void GPIOBlinkBits
(
int Bits,
int TimeHi,
int TimeLo
);

Parameters:

int Bits Specify the GPIOs that shall generate the waveform. Several GPIOs can
be handled simultaneously by using the bitwise or-operator (|). Use the
predefined constants GPIO0 through GPIO7 for specifying the GPIOs.

int TimeHi Specify the duration for logical high level in milliseconds.

int TimeLo Specify the duration for logical low level in milliseconds.

Return: None.

6.1.2.4 Read GPIOs

Use this function to read the logical level of one GPIO that has been configured as input.

int GPIOTestBit
(
int Bit
);

Parameters:

int Bits Specify the GPIO that shall be read. Use one of the predefined constants
GPIO0 through GPIO7 for specifying the GPIO.

Return: If the GPIO has logical high level, the return value is 1, otherwise it is 0.

6.1.3 Higher Level Port Functions

6.1.3.1 Send Data in Wiegand Format

Use this function to send a bitstream via a software emulated Wiegand interface. A Wiegand interface
uses two data lines, one line is used to transmit ones, the other one is used to transmit zeros. Each GPIO
can be individually configured to act as data line. Note that the integrated API LED-functions are working
with GPIO0 to GPIO2 by default, so the Wiegand data lines should be selected carefully.

void SendWiegand(int GPIOData0,int GPIOData1,int PulseTime,
int IntervalTime,byte* Bits,int BitCount);

Page 35 of 237

6 Peripheral Functions

Parameters:

int GPIOData0 Specify the GPIO that shall be used to transmit zeros. Use one of the pre-
defined constants GPIO0 through GPIO7 for specifying the GPIO.

int GPIOData1 Specify the GPIO that shall be used to transmit ones. Use one of the prede-
fined constants GPIO0 through GPIO7 for specifying the GPIO.

int PulseTime Specify the pulse duration in microseconds.

int IntervalTime Specify the duration in microseconds between consecutive pulses.

byte* Bits Reference to an array of bytes which represents a bit field which holds the
data to be sent.

int BitCount Specify the number of bits to be sent.

Return: None.

See timing diagram below for details about how the timing values are used:

Example:

Here is an example which shows minimum code for doing a Wiegand output:

// Init Section:
// Use GPIO2 and GPIO3 for Wiegand interface
GPIOConfigureOutputs(GPIO2 | GPIO3,GPIO_PUPD_NOPULL,GPIO_OTYPE_PUSHPULL);
// Enter idle level. In this case we have active low outputs
GPIOSetBits(GPIO2 | GPIO3);
// Prepare some Wiegand data:
byte Bits[4];
Bits[0] = 0x12;
Bits[1] = 0x34;
Bits[2] = 0x56;
Bits[3] = 0x78;
// Now send the bits
SendWiegand(GPIO2,GPIO3,100,1000,Bits,32);

Note:

• It is up to the App to complete Wiegand data with parity bits and decide number of bits. In this way
the App is fully flexible regarding data to be sent.

• The idle level of the Wiegand interface is determined by state of the outputs before calling SendWiegand.
It must be setup by a separate call to GPIOSetBits or GPIOClearBits depending on the require-
ments of the underlying hardware.

• The GPIOs might need additional circuitry against shortcut or voltage level depending on the in-
tended application.

Page 36 of 237

6 Peripheral Functions

6.1.3.2 Send Data in Omron Format

Use this function to send a bit stream via a software-emulated Omron interface. An Omron interface
uses two lines for data transmission, one for clock and one for the data bit stream. Each GPIO can be
individually configured to act as data or clock line. Note that the integrated API LED-functions are working
with GPIO0 to GPIO2 by default, so the Omron interface lines should be selected carefully.

void SendOmron(int GPIOClock,int GPIOData,int T1,int T2,int T3,
byte* Bits,int BitCount);

Parameters:

int GPIOClock Specify the GPIO that shall be used for generating the clock signal. Use one
of the predefined constants GPIO0 through GPIO7 for specifying the GPIO.

int GPIOData Specify the GPIO that shall be used for data transmission. Use one of the
predefined constants GPIO0 through GPIO7 for specifying the GPIO.

int T1

int T2

int T3

byte* Bits Reference to an array of bytes which represents a bit field which holds the
data to be sent.

int BitCount Specify the number of bits to be sent.

Return: None.

See timing diagram below for details about how the timing values are used:

Example:

Here is an example which shows minimum code for doing a clock/data output:

// Init Section:
// Use GPIO2 and GPIO3 for the clock/data interface
GPIOConfigureOutputs(GPIO2 | GPIO3,GPIO_PUPD_NOPULL,GPIO_OTYPE_PUSHPULL);
// Enter idle level. In this case we have active low outputs
GPIOSetBits(GPIO2 | GPIO3);
// Prepare some data:
byte Bits[4];
Bits[0] = 0x12;
Bits[1] = 0x34;
Bits[2] = 0x56;
Bits[3] = 0x78;
// Now send the bits
SendOmron(GPIO2,GPIO3,500,1000,500,Bits,32);

Note:

Page 37 of 237

6 Peripheral Functions

• It is up to the App to complete data with parity bits and decide number of bits. In this way the App is
fully flexible regarding data to be sent.

• The idle level of the clock/data interface is determined by state of the outputs before calling SendOmron.
It must be setup by a separate call to GPIOSetBits or GPIOClearBits depending on the require-
ments of the underlying hardware.

• The GPIOs might need additional circuitry against shortcut or voltage level depending on the in-
tended application.

6.2 Beeper

Use following function to sound a beep at the dedicated beeper port.

6.2.1 Duration controlled by function

void Beep(int Volume,int Frequency,int OnTime,int OffTime);

Parameters:

int Volume Specify the volume in percent from 0 to 100.

int Frequency Specify the frequency in Hertz from 500 to 10000.

int OnTime Specify the duration of the beep in milliseconds from 0 to 10000000.

int OffTime Specify the length of the pause after the beep in milliseconds from 0 to
10000000. This is useful for generating melodies. If this is not required, the
parameter may have the value 0.

Return: None.

6.2.2 Duration controlled by App

Turn on beep with infinite length. The execution of the App is continued independently.

void BeepOn(int Volume,int Frequency);

Parameters:

int Volume Specify the volume in percent from 0 to 100.

int Frequency Specify the frequency in Hertz from 500 to 10000.

Return: None.

Turn off beep:

void BeepOff(void);

Parameters: None.

Return: None.

Page 38 of 237

6 Peripheral Functions

6.3 LEDs

6.3.1 General Purpose LED Functions

These functions are related for usage with TWN4 Desktop where the different LEDs have a dedicated
connection scheme. The LEDs are connected as follows:

• GPIO0→ Red

• GPIO1→ Green

• GPIO2→ Yellow

6.3.1.1 Initialization

Use this function to initialize the respective GPIOs to drive LEDs.

void LEDInit(int LEDs);

Parameters:

int LEDs Specify the GPIOs that shall be configured for LED operation. Several
GPIOs can be configured simultaneously by using the bitwise or-operator
(|). Use the predefined constants REDLED, GREENLED or YELLOWLED for speci-
fying the GPIOs.

Return: None.

6.3.1.2 Set LEDs On/Off

Use these functions to set one or several LEDs on/off.

void LEDOn(int LEDs);
void LEDOff(int LEDs);

Parameters:

int LEDs Specify the LEDs that shall be set on/off. Several LEDs can be handled
simultaneously by using the bitwise or-operator (|). Use the predefined con-
stants REDLED, GREENLED or YELLOWLED for specifying the LEDs.

Return: None.

6.3.1.3 Toggle LEDs

Use this function to toggle one or several LEDs.

void LEDToggle(int LEDs);

Page 39 of 237

6 Peripheral Functions

Parameters:

int LEDs Specify the LEDs that shall be toggled. Several LEDs can be handled simul-
taneously by using the bitwise or-operator (|). Use the predefined constants
REDLED, GREENLED or YELLOWLED for specifying the LEDs.

Return: None.

6.3.1.4 Blink LEDs

Use this function to let one or several LEDs blink.

void LEDBlink(int LEDs, int TimeOn, int TimeOff);

Parameters:

int LEDs Specify the LEDs that shall blink. Several LEDs can be handled simulta-
neously by using the bitwise or-operator (|). Use the predefined constants
REDLED, GREENLED or YELLOWLED for specifying the LEDs.

int TimeOn Specify the on-time in milliseconds.

int TimeOff Specify the off-time in milliseconds.

Return: None.

6.3.2 Diagnostic LED

The TWN4 Core Module has one integrated LED that can be used for diagnostic purposes. There is no
initialization necessary.

6.3.2.1 Set Diagnostic LED On/Off

Use these functions to set the diagnostic LED on or off.

void DiagLEDOn(void);
void DiagLEDOff(void);

Parameters: None.

Return: None.

6.3.2.2 Toggle Diagnostic LED

Use this function to toggle the diagnostic LED.

void DiagLEDToggle(void);

Parameters: None.

Return: None.

Page 40 of 237

6 Peripheral Functions

6.3.2.3 Get LED State

Use this function to determine if the diagnostic LED is on or off.

bool DiagLEDIsOn(void);

Parameters: None.

Return: If the diagnostic LED is on, the return value is true, otherwise it is false.

Page 41 of 237

7 Conversion Functions

7 Conversion Functions

7.1 Hexadecimal ASCII to Binary

7.1.1 Scan Hexadecimal Character

Convert an ASCII-character which represents a hexadecimal number into its binary representation.

int ScanHexChar
(
byte Char
);

Parameters:

byte Char ASCII-coded hexadecimal character. The input value may be one of the
characters ’0’-’9’, ’a’-’f’ or ’A’-’F’.

Return: If the character is a valid hexadecimal expression, the return value is the
binary representation (a number between 0 and 15), else it is -1.

7.1.2 Scan Hexadecimal String

Convert an array of bytes containing ASCII characters which represents hexadecimal numbers into their
binary representation. The conversion is done in place. This means that after successful conversion,
number of valid bytes is half of the given count of ASCII characters (two hex digits represent one binary
byte).

int ScanHexString
(
byte* ASCII,
int ByteCount
);

Parameters:

byte* ASCII Reference to an array of ASCII-coded hexadecimal characters. The array
may contain the characters ’0’-’9’, ’a’-’f’ or ’A’-’F’. The array is also the desti-
nation for the operation.

int ByteCount Number of (ASCII-) bytes to be converted.

Return: Number of successfully converted bytes.

Page 42 of 237

7 Conversion Functions

7.2 Binary to Hexadecimal ASCII

Convert a number, which is given as a bit field into ASCII format, and store it in an array of bytes. The
conversion is made in the following sequence:

1. Convert the binary data to a number of digits, which is determined by the parameter MaxDigits. If
MaxDigits is smaller than MinDigits, the number of digits is equal to MaxDigits.

2. If the result of the conversion is less than the number of digits specified by MinDigits, precede the
converted number with zeros according to MinDigits.

int ConvertBinaryToString
(
const byte* SourceBits,
int StartBit,
int BitCnt,
char* String,
int Radix,
int MinDigits,
int MaxDigits
);

Parameters:

const byte* SourceBits A reference to an array of bytes, which contains the bit field.

int StartBit Index of the first bit to be converted.

int BitCnt The number of bits, which are valid within the array of bytes.

char* String A reference to an array of bytes, which receives the result of the conversion.

int Radix Base for conversion, use:
• 2 for binary conversion
• 8 for octal conversion
• 10 for decimal conversion
• 16 for hexadecimal conversion

int MinDigits Specifies the minimum number of digits, the output should contain. If
MinDigits is 0, then at least 1 digit is sent. If MinDigits is greater than the
actual width of the number to be converted, then the number is preceded by
zeros.

int MaxDigits Specifies the maximum number of digits, the output may contain. MaxDigits
has higher priority than MinDigits.

Return: The actual number of ASCII bytes, which has been stored in the array
String.

Page 43 of 237

8 I2C Functions

8 I2C Functions

This chapter describes functions for accessing the I2C interface of TWN4. I2C is also known as TWI
(Two-Wire Interface).

8.1 Initialization/Deinitialization

8.1.1 I2CInit

bool I2CInit(int Mode);

Parameters:

int Mode This value specifies the mode of operation.

Return: If the operation was successful, the return value is true, otherwise it is
false.

8.1.2 I2CDeInit

void I2CDeInit(void);

Parameters: None.

Return: None.

8.1.3 Examples

// Initialize as master
I2CInit(I2CMODE_MASTER);

// Initialize as slave.
// I2CMODE_SLAVE: Setup interface as slave
// 0x30: Address of of this slave
// I2CMODE_CHANNEL: Do communication via channels (this is the
// only currently available option, therefore
// a must to be specified)
I2CInit(I2CMODE_SLAVE | 0x30 | I2CMODE_CHANNEL);

8.2 Communication (Master)

8.2.1 I2CMasterStart

Generate a I2C start sequence.

void I2CMasterStart(void);

Parameters: None.

Return: None.

Page 44 of 237

8 I2C Functions

8.2.2 I2CMasterStop

Generate a I2C stop sequence.

void I2CMasterStop(void);

Parameters: None.

Return: None.

8.2.3 I2CMasterTransmitByte

Transmit one byte to a slave.

void I2CMasterTransmitByte(byte Byte);

Parameters:

byte Byte The byte to be transmitted to the slave.

Return: None.

8.2.4 I2CMasterReceiveByte

Receive one byte from a slave.

byte I2CMasterReceiveByte(void);

Parameters: None.

Return: The byte read from the slave.

8.2.5 I2CMasterBeginWrite

Begin a write sequence. This will send the target slave address together with R/W-bit set to write.

void I2CMasterBeginWrite(int Address);

Parameters:

int Address The target slave address, a value from 0 to 127.

Return: None.

8.2.6 I2CMasterBeginRead

Begin a read sequence. This will send the target slave address together with R/W-bit set to read.

void I2CMasterBeginRead(int Address);

Parameters:

int Address The target slave address, a value from 0 to 127.

Return: None.

Page 45 of 237

8 I2C Functions

8.2.7 I2CMasterSetAck

Set ACK state of the master. This ACK will be sent after receiption of one byte from the slave.

void I2CMasterSetAck(bool SetOn);

Parameters:

bool SetOn Set this value to true to turn acknowledge on or false to turn acknowledge
off. Definitions ON or OFF may be used for better readability.

Return: None.

8.2.8 Examples

// This sample demonstrates transmission and receiption of data
// to/from a I2C-slave

// This is the address of the slave
const int I2CAddress = 0x30;
// Init the I2C port
I2CInit(I2CMODE_MASTER);

// Send two bytes to the slave
I2CMasterStart();
I2CMasterBeginWrite(I2CAddress);
I2CMasterTransmitByte(0x12);
I2CMasterTransmitByte(0x34);
I2CMasterStop();

// Receive three bytes from the slave
byte Bytes[3];
I2CMasterStart();
I2CMasterBeginRead(I2CAddress);
// All bytes except last byte require an ACK to be sent
I2CMasterSetAck(ON);
Bytes[0] = I2CMasterReceiveByte();
Bytes[1] = I2CMasterReceiveByte();
// Turn off ACK before reading last byte
I2CMasterSetAck(OFF);
Bytes[2] = I2CMasterReceiveByte();
I2CMasterStop();

8.3 Communication (Slave)

Communication as a I2C slaves works with well-defined I2C packets, which must be sent between master
and slave (TWN4).

The communication is performed via normal communication channels. Therefore, for transmitting and
receiving data, the normal IO-functions must be used. These are WriteByte, ReadByte and so on. In
case of communication via I2C, the channel 4 must be used. There is a definition for this channel, which
is CHANNEL_I2C.

As a conclusion, TWN4 offers a easy method of changing communication from USB or RS232 to I2C just
by changing the communication channel. Only care must be taken to avoid buffer overflow. This can be

Page 46 of 237

8 I2C Functions

achieved by calling appropriate IO-functions TestEmpty and TestFull. On the other hand many commu-
nication protocols avoid a buffer overflow by their inherent flow of communication (e.g. command/response
protocol).

The specification for the format of the packets sent/reveived on the I2C bus is as follows:

8.3.1 Slave to Master

1 Byte Address/Read

1 Byte Buffer status: Bits 7..4 hold the number of bytes, which are available to be
read from the slave. Bits 3..0 hold the maximum number of bytes, which
may be sent to slave.

n Bytes Payload, where n is 0..15. Note: Due to the fact, that ACK must be turned
off one byte before the master receives last byte, it is useful to check buffer
status and receive bytes in separate read operations.

8.3.2 Master to Slave

1 Byte Address/Write

n Bytes Payload, where n is 1..15

8.3.3 Examples

This is a implementation of a I2C master communication, which routes USB- or RS232-interface to the
I2C-interface of a TWN4 Core Module. In order to test this example, two TWN4 Core Modules are re-
quired:

• 1 TWN4 Core Module, which is running as I2C slave

• 1 TWN4 Core Module, which is running as I2C master.

//
// TWN4 App: I2C master, which routes USB or RS232-traffic to I2C
//
#include "twn4.sys.h"
#include "apptools.h"

int main(void)
{

const int I2CAddress = 0x30;
// USB or RS232 depends on which cable is connected
int HostChannel = GetHostChannel();

I2CInit(I2CMODE_MASTER);
while (true)
{

int I2CRXTXCount;
int TransferCount;

I2CMasterStart();
I2CMasterBeginRead(I2CAddress);
I2CMasterSetAck(OFF);

Page 47 of 237

8 I2C Functions

I2CRXTXCount = I2CMasterReceiveByte();
I2CMasterStop();

// **
// ****** Direction Host -> I2C *****************************
// **
TransferCount = MIN(GetByteCount(HostChannel,DIR_IN),

I2CRXTXCount & 0x0F);
if (TransferCount > 0)
{

I2CMasterStart();
I2CMasterBeginWrite(I2CAddress);
while (TransferCount-- > 0)

I2CMasterTransmitByte(ReadByte(HostChannel));
I2CMasterStop();

}

// **
// ****** Direction I2C -> Host *****************************
// **
TransferCount = MIN(GetBufferSize(HostChannel,DIR_OUT)-

GetByteCount(HostChannel,DIR_OUT),
I2CRXTXCount >> 4);

if (TransferCount > 0)
{

I2CMasterStart();
I2CMasterBeginRead(I2CAddress);
I2CMasterSetAck(ON);
// Flush RX/TX byte count
I2CMasterReceiveByte();
// Read data except last byte
while (TransferCount-- > 1)

WriteByte(HostChannel,I2CMasterReceiveByte());
// Turn off ACK before reading last byte
I2CMasterSetAck(OFF);
WriteByte(HostChannel,I2CMasterReceiveByte());
I2CMasterStop();

}
}

}

Page 48 of 237

9 SPI Functions

9 SPI Functions

This chapter describes functions for accessing the SPI interface of TWN4. The SPI interface can be
operated as master or slave.

9.1 Slave Mode

To operate the SPI interface in slave mode, it is only necessary to configure SPI for slave mode using
the function SPIInit. All data transfer is done using the respective I/O functions via channel CHANNEL_SPI
(Core/Nano based readers) or CHANNEL_HOST (Mini Reader).

9.1.1 Timing

MSB LSB

MSB LSB X

2

3 4

5

9

6 7

10

SCK

MOSI

MISO

SS

1

X

11

12

8

Figure 9.1: SPI Timing in Slave Mode

Page 49 of 237

9 SPI Functions

Marking Description Min Max

1 SS low to start of clocking 2µs

2 SS low to data output 100ns

3 Data input setup time 5ns

4 Data input hold time 4ns

5 SCK to data output 25ns

6 SCK low 34ns

7 SCK high 34ns

8 SCK rise/fall time 8ns

9 SCK period 68ns

10 SCK to SS high 68ns

11 SS inactive time 2µs

12 SS high to tri-state 2ns 10ns

9.1.2 Communication Protocol

Communication with a TWN4 in SPI slave mode is conducted with well-defined SPI packets, which must
be exchanged between master and slave. After a falling edge of the SS line, a communication frame can
be initiated. The first exchanged byte is a buffer status byte which gives information about the communi-
cation buffer of the master and the slave respectively, see the sections below for details. A rising edge on
SS signals the end of the communication frame.

9.1.2.1 Master to Slave

1 Byte Bits 3..0: Length of following payload.

n Bytes Payload, where n is 0..15
Note: It’s possible to query the buffer status of a slave by sending 0x00 packets, this won’t change the
internal state of the slave but enforces the slave to reveal its internal SPI buffer state.

9.1.2.2 Slave to Master

1 Byte Buffer status: Bits 7..4 hold the number of bytes, which are available to be
read from the slave. Bits 3..0 hold the maximum number of bytes, which
may be sent to slave.

n Bytes Payload, where n is 0..15.

9.1.2.3 Example of a SPI Host Implementation

byte SPIReadWrite(byte Byte)
{

int i;

for (i=0; i<8; i++)

Page 50 of 237

9 SPI Functions

{
if (Byte & 0x80)

GPIO_MOSI_HIGH();
else

GPIO_MOSI_LOW();
GPIO_SCK_HIGH();
Byte <<= 1;
if (GPIO_MISO_TEST())

Byte |= 1;
GPIO_SCK_LOW();

}
return Byte;

}

int main(void)
{

GPIOConfigureOutputs(GPIO_MOSI | GPIO_SCK | GPIO_SS, GPIO_PUPD_NOPULL, GPIO_OTYPE_PUSHPULL);
GPIOConfigureInputs(GPIO_MISO, GPIO_PUPD_NOPULL);

while (true)
{

// Query buffer status of SPI slave
GPIO_SS_LOW();
byte SPIRXTXCount = SPIReadWrite(0x00);
GPIO_SS_HIGH();

// Determine number of bytes to be sent to the slave, limit to 15 bytes
byte TransferCountTX = MIN(GetByteCount(CHANNEL_USB, DIR_IN), SPIRXTXCount & 0x0F);

// Send buffer status byte to the slave
GPIO_SS_LOW();
byte TransferCountRX = SPIReadWrite(TransferCountTX) >> 4;

// Send and receive payload
while (TransferCountTX || TransferCountRX)
{

byte Byte = SPIReadWrite(TransferCountTX ? ReadByte(CHANNEL_USB) : 0x00);
if (TransferCountTX)

TransferCountTX--;
if (TransferCountRX)
{

WriteByte(CHANNEL_USB, Byte);
TransferCountRX--;

}
}
GPIO_SS_HIGH();

}
}

9.2 Initialization/Deinitialization

9.2.1 SPIInit

Initialize communication via SPI interface.

bool SPIInit(const TSPIParameters *SPIParameters);

Page 51 of 237

9 SPI Functions

Parameters:

const TSPIParameters
*SPIParameters

Pointer to a structure, which specifies mode of operation.

Return: If the operation was successful, the return value is true, otherwise it is
false.

The members of structure TSPIParameters are defined as follows:

Members Length
(Bits)

Description

byte Mode 8 Mode of operation. Specify SPI_MODE_MASTER or
SPI_MODE_SLAVE here.

byte CPOL 8 Polarity if clock signal (SPI_SCK). Specify SPI_CPOL_LOW for
idle/inactive low or SPI_CPOL_HIGH for idle/inactive high.

byte CPHA 8 Active edge of SPI_SCK. Specify SPI_CPHA_EDGE1 for first
edge or SPI_CPHA_EDGE2 for second edge. In conjunction
with the polarity of the clock signal this leads to active edge,
which is either rising or falling.

byte ClockRate 8 Specify clock rate of SPI_SCK. Valid values are
SPI_CLOCKRATE_117_KHZ, SPI_CLOCKRATE_234_KHZ,
SPI_CLOCKRATE_469_KHZ, SPI_CLOCKRATE_938_KHZ,
SPI_CLOCKRATE_1_88_MHZ, SPI_CLOCKRATE_3_75_MHZ,
SPI_CLOCKRATE_7_5_MHZ or SPI_CLOCKRATE_15_MHZ

byte BitOrder 8 Specify order of data bits on data lines (SPI_MISO and
SPI_MOSI). Specify SPI_FIRSTBIT_MSB for idle/inactive low
or SPI_FIRSTBIT_LSB for idle/inactive high.

Table 9.1: Definition of TSPIParameters

9.2.2 SPIDeInit

Deinitialize SPI interface.

void SPIDeInit(void);

Parameters: None.

Return: None.

9.3 Communication

9.3.1 SPIMasterBeginTransfer

Begin a transfer via SPI interface in master mode. This function sets signal SPI_SS- to active, thus
low.

void SPIMasterBeginTransfer(void);

Page 52 of 237

9 SPI Functions

Parameters: None.

Return: None.

9.3.2 SPIMasterEndTransfer

End a transfer via SPI interface in master mode. This function sets signal SPI_SS- to inactive, thus
high.

void SPIMasterEndTransfer(void);

Parameters: None.

Return: None.

9.3.3 SPITransceive

Send and receive a number of bytes to/from the slave. Background: SPI is a full duplex communication
link. This allows to send and receive data at the same time. With every clock pulse, a bit is sent to the
slave, another bit is received from the slave.

bool SPITransceive(const byte *TXData,byte *RXData,int ByteCount);

Parameters:

const byte *TXData Pointer to an array of bytes being transmitted to the slave.

byte *RXData Pointer to an array of bytes being received from the slave.

int ByteCount Number of bytes transferred in each direction.

Return: If the operation was successful, the return value is true, otherwise it is
false.

9.3.4 SPITransmit

Send a number of bytes to the slave. Received bits are refused.

bool SPITransmit(const byte *TXData,int ByteCount);

Parameters:

const byte *TXData Pointer to an array of bytes being transmitted to the slave.

int ByteCount Number of bytes transmitted.

Return: If the operation was successful, the return value is true, otherwise it is
false.

9.3.5 SPIReceive

Receive a number of bytes from the slave. Transmitted bits are set to zero.

bool SPIReceive(byte *RXData,int ByteCount);

Page 53 of 237

9 SPI Functions

Parameters:

byte *RXData Pointer to an array of bytes being received from the slave.

int ByteCount Number of bytes received.

Return: If the operation was successful, the return value is true, otherwise it is
false.

9.4 Examples

#include "twn4.sys.h"

void FuncSPIInitMaster(void)
{

const TSPIParameters Mode =
{

SPI_MODE_MASTER,
SPI_CPOL_LOW,
SPI_CPHA_EDGE1,
SPI_CLOCKRATE_15_MHZ,
SPI_FIRSTBIT_MSB

};
SPIInit(&Mode);

}
void FuncSPITransmitPacket(void)
{

SPIMasterBeginTransfer();
static const byte TXData[4] = { ’A’,’B’,’C’,’D’ };
SPITransmit(TXData,4);
SPIMasterEndTransfer();

}
void FuncSPIReceivePacket(void)
{

SPIMasterBeginTransfer();
byte RXData[4];
SPIReceive(RXData,4);
SPIMasterEndTransfer();

}
void FuncSPITransceivePacket(void)
{

SPIMasterBeginTransfer();
static const byte TXData[4] = { ’A’,’B’,’C’,’D’ };
byte RXData[4];
SPITransceive(TXData,RXData,4);
SPIMasterEndTransfer();

}

Page 54 of 237

10 RF Functions

10 RF Functions

10.1 SearchTag

Use this function to search a transponder in the reading range of TWN4. TWN4 is searching for all types
of transponders, which have been specified via function SetTagTypes. If a transponder has been found,
tag type, length of ID and ID data itself are returned.

bool SearchTag(int *TagType,int *IDBitCount,byte *ID,int MaxIDBytes);

Parameters: None.

int *TagType Pointer to an integer, which receives the type of tag, which has been found.

int *IDBitCount Pointer to an integer, which receives the number of bits(!), the ID consists of.

byte *ID Pointer to an array of bytes, which contain ID data, if a transponder has been
found.

int MaxIDBytes A value, which specifies the buffer size of ID. No more than this specified
number of bytes will be copied to the location specified by ID.

Return: If a transponder has been found, the function returns true, otherwise it
returns false.

10.2 SetRFOff

Turn off RF field. If no further operations are required on a transponder found via function SearchTag you
may use this command to minimize power consumption of TWN4.

void SetRFOff(void);

Parameters: None.

Return: None.

10.3 SetTagTypes

Use this function to configure the transponders, which are searched by function SearchTag.

void SetTagTypes(unsigned int LFTagTypes,unsigned int HFTagTypes);

Parameters:

unsigned int LFTagTypes Specifies transponder types at the frequency 125.0 kHz - 134.2 kHz.

unsigned int HFTagTypes Specifies transponder types at the frequency 13.56 MHz.

Return: None.

Page 55 of 237

10 RF Functions

10.3.1 Supported Types of LF Tags (125 kHz - 134.2 kHz)

Definition Frequency Name Status

LFTAG_EM4102 LF EM4102 / CASI-RUSCO Supported

LFTAG_HITAG1S LF HITAG 1 / HITAG S Supported

LFTAG_HITAG2 LF HITAG 2 Supported

LFTAG_EM4150 LF EM4x50 Supported

LFTAG_AT5555 LF AT5555 / AT5557 / Supported, delivers no ID

AT5577 / Q5

LFTAG_ISOFDX LF ISO FDX-B / EM4105 Supported

LFTAG_EM4026 LF EM4026 On request

LFTAG_HITAGU LF HITAG µ On request

LFTAG_EM4305 LF EM4305 Supported

LFTAG_HIDPROX LF HID Prox Supported with option P

LFTAG_TIRIS LF ISO HDX / TIRIS Supported

LFTAG_COTAG LF Cotag Supported by option P

LFTAG_IOPROX LF ioProx Supported by option P

LFTAG_INDITAG LF Indala Supported by option P

LFTAG_HONEYTAG LF NexWatch Supported by option P

LFTAG_AWID LF AWID Supported

LFTAG_GPROX LF G-Prox Supported, read of hash value

LFTAG_PYRAMID LF Pyramid Supported

LFTAG_KERI LF Keri Supported, read of raw data

LFTAG_DEISTER LF Deister Supported, read of raw data

LFTAG_CARDAX LF Cardax Supported, read of hash value

LFTAG_NEDAP LF Nedap Supported, read of hash value

LFTAG_PAC LF PAC Supported, read of hash value

LFTAG_IDTECK LF IDTECK Supported, read of raw data

LFTAG_ULTRAPROX LF UltraProx Supported, read of raw data

LFTAG_ICT LF ICT Supported, read of hash data

LFTAG_ISONAS LF Isonas Supported, read of raw data

Page 56 of 237

10 RF Functions

10.3.2 Supported Types of HF Tags (13.56 MHz, Bluetooth)

Definition Frequency Name Status

HFTAG_MIFARE HF ISO14443A / MIFARE Supported

HFTAG_ISO14443B HF ISO14443B Supported

HFTAG_ISO15693 HF ISO15693 / Tag-it Supported

HFTAG_LEGIC HF LEGIC Supported by TWN4 LEGIC

HFTAG_HIDICLASS HF HID iCLASS Supported, read of UID, read of PAC
with option I

HFTAG_FELICA HF FeliCa Supported, read of UID only

HFTAG_SRX HF SRX Supported

HFTAG_NFCP2P HF NFC Peer-to-Peer Supported

HFTAG_BLE HF BLE (Bluetooth Low Energy) Supported by TWN4 MultiTech 2 BLE

HFTAG_TOPAZ HF Topaz Not supported by TWN4 LEGIC

HFTAG_CTS HF CTS Not supported by TWN4 LEGIC

HFTAG_BLELC HF LEGIC Connect (BLE) Supported by TWN4 Slim LEGIC

In order to search for more than one type of transponder, several types can be combined.

Note:

The use of the predefined macro TAGMASK is mandatory, even if only one type of tag is specified. Here is
an example which is searching for EM4102 and HITAG 1 at LF and for MIFARE at HF:

Example:

SetTagTypes(TAGMASK(LFTAG_EM4102) | TAGMASK(LFTAG_HITAG1S),
TAGMASK(HFTAG_MIFARE));

10.4 GetTagTypes

This function returns the transponder types currently being searched for by function SearchTag separated
by frequency (LF and HF).

void GetTagTypes(unsigned int *LFTagTypes,unsigned int *HFTagTypes);

Parameters:

unsigned int *LFTagTypesPointer to a value, which receives the LF tag types.

unsigned int *HFTagTypesPointer to a value, which receives the HF tag types.

Return: None.

10.5 GetSupportedTagTypes

This function returns the transponder types, which are actually supported by the individual TWN4 sepa-
rated by frequency (LF and HF). Also the P-option is taken into account. This means, if the specific TWN4
has no option P, the appropriate transponders are not returned as supported type of transponder.

Page 57 of 237

10 RF Functions

void GetSupportedTagTypes(unsigned int *LFTagTypes,
unsigned int *HFTagTypes);

Parameters:

unsigned int *LFTagTypesPointer to a value, which receives the LF tag types.

unsigned int *HFTagTypesPointer to a value, which receives the HF tag types.

Return: None.

Page 58 of 237

11 EM4x02-Specific Transponder Operations

11 EM4x02-Specific Transponder Operations

This chapter describes one function for accessing EM4x02 transponders. EM4x02 is a broadly known
type of transponder, which is known under several names, such as EM4002, EM4102, Unique and several
other brands.

11.1 Function

11.1.1 EM4102_GetTagInfo

Get detailed information regarding transponder type LFTAG_EM4102 being found by function SearchTag.

int EM4102_GetTagInfo(void)

Parameters: None.

Return: One of the following pre-defined values: EM4102_BITRATE_UNKNOWN or
EM4102_BITRATE_F64 or EM4102_BITRATE_F32.

Page 59 of 237

12 HITAG 1- and HITAG S-Specific Transponder Operations

12 HITAG 1- and HITAG S-Specific Transponder
Operations

This chapter describes functions for accessing HITAG 1 and HITAG S transponders. HITAG 1 and HITAG
S are very similar. Therefore, same set of functions can be used for both types.

HITAG 1 and HITAG S transponder are available with different memory sizes. Due to this, the maximum
address, which can be specified depends also on the specific type of transponder:

Type Memory
Size (Bits)

Memory
Size (Bytes)

Valid Address
Range

HITAG 1 2048 256 0-63

HITAG S
2048

2048 256 0-63

HITAG S
256

256 32 0-7

12.1 Read/Write Data

12.1.1 Hitag1S_ReadPage

Read one page (4 bytes) from the transponder.

bool Hitag1S_ReadPage(int PageAddress,byte *Page);

Parameters:

int PageAddress Specifies the address of the page to be read.

byte *Page Pointer to an array of 4 bytes where page data is stored after a successful
operation.

Return: If the operation was successful, the return value is true, otherwise it is
false.

12.1.2 Hitag1S_WritePage

Write one page (4 bytes) to the transponder.

bool Hitag1S_WritePage(int PageAddress,const byte *Page);

Page 60 of 237

12 HITAG 1- and HITAG S-Specific Transponder Operations

Parameters:

int PageAddress Specifies the address of the page to be written.

byte *Page Pointer to an array of 4 bytes which are written to the transponder.

Return: If the operation was successful, the return value is true, otherwise it is
false.

12.1.3 Hitag1S_ReadBlock

Read 1 to 4 consecutive pages (4 to 16 bytes) from the transponder. The number of pages depends on the
specified address: The read process is stopped as soon as the read address reaches a block boundary,
which is a multiple of 4. If BlockAddress already specifies a block boundary, the maximum of 4 pages will
be read.

bool Hitag1S_ReadBlock(int BlockAddress,
byte *Block,int *BytesRead);

Parameters:

int BlockAddress Specifies the first page address of the block to be read.

byte *Page Pointer to an array of 4 to 16 bytes which are read from the transponder.

int *BytesRead Pointer to an integer, which receives the number of actually read bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

12.1.4 Hitag1S_WriteBlock

Write 1 to 4 consecutive pages (4 to 16 bytes) to the transponder. The number of pages depends on the
specified address: The write process is stopped as soon as the write address reaches a block boundary,
which is a multiple of 4. If BlockAddress already specifies a block boundary, the maximum of 4 pages will
be written.

bool Hitag1S_WriteBlock(int BlockAddress,const byte *Block,
int *BytesWritten);

Parameters:

int BlockAddress Specifies the first page address of the block to be written.

byte *Page Pointer to an array of 4 to 16 bytes which are written to the transponder.

int *BytesWritten Pointer to an integer, which receives the number of actually written bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

12.2 Hitag1S_Halt

This functions will halt a currently selected transponder. The transponder will not participate in any further
transponder communication till the RF field is turned off and on again.

bool Hitag1S_Halt(void);

Page 61 of 237

12 HITAG 1- and HITAG S-Specific Transponder Operations

Parameters: None.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 62 of 237

13 HITAG 2-Specific Transponder Operations

13 HITAG 2-Specific Transponder Operations

This chapter describes functions for accessing HITAG 2 transponders.

HITAG 2 is a transponder with a memory size of 256 bits, thus 32 bytes. It stores data organized in pages,
where one page is 4 bytes. There are 8 pages, which can be accessed with addresses in the range from
0 to 7.

HITAG 2 can be operated in two modes: Password mode and crypto mode.

Note:

TWN4 supports password mode of HITAG 2 only.

13.1 Read/Write Data

13.1.1 Hitag2_ReadPage

Read one page (4 bytes) from the transponder.

bool Hitag2_ReadPage(int PageAddress,byte *Page);

Parameters:

byte PageAddress Specifies the address of the page to be read.

byte *Page Pointer to an array of 4 bytes where page data is stored after a successful
operation.

Return: If the operation was successful, the return value is true, otherwise it is
false.

13.1.2 Hitag2_WritePage

Write one page (4 bytes) to the transponder.

bool Hitag2_WritePage(byte PageAddress,const byte *Page);

Parameters:

byte PageAddress Specifies the address of the page to be written.

byte *Page Pointer to an array of 4 bytes which are written to the transponder.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 63 of 237

13 HITAG 2-Specific Transponder Operations

13.1.3 Hitag2_SetPassword

During search for HITAG 2, TWN4 is using a password for doing a login to the transponder. The default
password after a reset is 0x4D,0x49,0x4B,0x52. This is the well-known default password for HITAG 2.

void Hitag2_SetPassword(const byte *Password);

Parameters:

const byte *Password Pointer to an array of 4 bytes, which contains the new password.

Return: None.

13.2 Hitag2_Halt

This functions will halt a currently selected transponder. The transponder will not participate in any further
transponder communication till the RF field is turned off and on again.

bool Hitag2_Halt(void);

Parameters: None.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 64 of 237

14 EM4x50-Specific Transponder Operations

14 EM4x50-Specific Transponder Operations

This chapter describes functions for accessing EM4x50 transponders. There are several chips, which are
compatible to each other within this family. These are: EM4050, EM4150, EM4450, EM4550. According
to the datasheet of the EM4x50 transponder, one word is meant to be 4 bytes.

14.1 Functions

Perform a login operation to the transponder.

14.1.1 EM4150_Login

bool EM4150_Login(const byte *Password)

Parameters:

const byte *Password Pointer to an array of 4 bytes which contains the password.

Return: If the operation was successful, the return value is true, otherwise it is
false.

14.1.2 EM4150_ReadWord

Read one word (4 bytes) from the transponder.

bool EM4150_ReadWord(int Address,byte *Word)

Parameters:

int Address Specifies the address of the page to be read. The valid address range is
from 0 to 33.

byte *Word Pointer to an array of 4 bytes which contains data read from the transponder.

Return: If the operation was successful, the return value is true, otherwise it is
false.

14.1.3 EM4150_WriteWord

Write one word (4 bytes) to the transponder.

bool EM4150_WriteWord(int Address,const byte *Word)

Page 65 of 237

14 EM4x50-Specific Transponder Operations

Parameters:

int Address Specifies the address of the page to be written.

const byte *WordData Pointer to an array of 4 bytes which contains data to be written to the
transponder.

Return: If the operation was successful, the return value is true, otherwise it is
false.

14.1.4 EM4150_WritePassword

Change the password stored on a transponder.

bool EM4150_WritePassword(const byte *ActualPassword,const byte *NewPassword)

Parameters:

const byte
*ActualPassword

Pointer to an array of 4 bytes which specifies the current password of the
transponder.

const byte
*NewPassword

Pointer to an array of 4 bytes which specifies the password to be written to
the transponder.

Return: If the operation was successful, the return value is true, otherwise it is
false.

14.1.5 EM4150_GetTagInfo

Get detailed information regarding transponder type LFTAG_EM4150 being found by function SearchTag.

int EM4150_GetTagInfo(void)

Parameters: None.

Return: One of the following pre-defined values: EM4150_BITRATE_UNKNOWN or
EM4150_BITRATE_F64 or EM4150_BITRATE_F40.

Page 66 of 237

15 EM4305-Specific Transponder Operations

15 EM4305-Specific Transponder Operations

This chapter describes functions for accessing the EM4305 transponder. The available system functions
are according to the command set of EM4305. For additional information please also consult the data
sheet of the manufacturer.

Notes:

• EM4305 is a versatile chip, which allows several types of modulation and bit rates in direction from
transponder to the reader. Even though, TWN4 allows to switch EM4305 into any type of modulation,
it only supports to read data from the transponder, if the transponder is in default configuration
(Manchester modulation, bit rate RF/64)

• If EM4305 is configured to emulate FDX-B, it will be found by the system function SearchTag as tag
type LFTAG_ISOFDX.

• If EM4305 is configured to emulate EM4x02, it will be found by the system function SearchTag as tag
type LFTAG_EM4102.

How to return EM4305 to default configuration:

If EM4305 was programmed to different kind of modulation or bit rate (e.g. due to emulation of FDX),
following sequence is proposed to establish communication with transponder:

1. Call EM4305_Begin

2. Call EM4305_Login with valid password (if needed)

3. Call EM4305_Write, write 0xFA 0x01 0x80 0x00 (the default configuration) to address 4

4. Call EM4305_Begin

5. Continue with desired further operations

15.1 Functions

15.1.1 EM4305_Begin

If EM4305 in question is already configured to other than Manchester, RF/64, it cannot be found by system
function SearchTag.

For this reason and in order to work with EM4305 independent of its configuration, there is the system func-
tion EM4305_Begin. Instead of searching the transponder in question, it just prepares TWN4 for operation
with EM4305 (thus, turning on RF field).

void EM4305_Begin(void)

Parameters: None.

Return: None.

Page 67 of 237

15 EM4305-Specific Transponder Operations

15.1.2 EM4305_Read

bool EM4305_Read(int Address,byte *Data)

Read one word (4 bytes) from the transponder.

Parameters:

int Address Specifies the address of the word to be read. The valid address range is
from 0 to 15.

byte *Data Pointer to an array of 4 bytes which contains data read from the transponder.

Return: Return is false, if operation failed or true, if operation was successful.
Success is determined if response from transponder contains valid parity
information.

15.1.3 EM4305_Write

Write one word (4 bytes) to the transponder.

bool EM4305_Write(int Address,const byte *Data)

Parameters:

int Address Specifies the address of the word to be written. The valid address range is
from 0 to 15.

const byte *Data Pointer to an array of 4 bytes which contains data to be written to the
transponder.

Return: If the operation was successful, the return value is true, otherwise it is
false. Success is determined by if 0x0A was received from the transponder,
once operation is completed.

15.1.4 EM4305_Login

Login to the transponder with a given password (4 bytes).

bool EM4305_Login(const byte *Password)

Parameters:

const byte *Password Pointer to an array of 4 bytes which contains the password.

Return: If the operation was successful, the return value is true, otherwise it is
false. Success is determined by if 0x0A was received from the transponder,
once operation is completed.

15.1.5 EM4305_Protect

Protect words on the transponder by specification of a protection word (4 bytes, 2 bytes are actually used).
Also see data sheet of transponder.

bool EM4305_Protect(const byte *Data)

Page 68 of 237

15 EM4305-Specific Transponder Operations

Parameters:

const byte *Data Pointer to an array of 4 bytes which contains the protection data.

Return: If the operation was successful, the return value is true, otherwise it is
false. Success is determined by if 0x0A was received from the transponder,
once operation is completed.

15.1.6 EM4305_Disable

Disable modulation of transponder currently in the RF field.

bool EM4305_Disable(void))

Parameters: None.

Return: If the operation was successful, the return value is true, otherwise it is
false. The function signals success, as long as transponder does not return
anything or return answer is different from 0x01.

Page 69 of 237

16 AT55xx-Specific Transponder Operations

16 AT55xx-Specific Transponder Operations

This chapter describes functions for accessing AT55xx transponders. There are several chips, which are
compatible to each other within this family. These are: e5550, e5551, T5555, T5555B, T5556, T5557,
ATA5567, ATA5577. Note: T5552 and T5558 are not supported by this API.

16.1 Control Functions

16.1.1 AT55_Begin

The function AT55_Begin must be used before subsequent read or write access to the transponder in
question.

void AT55_Begin(void);

Parameters: None.

Return: None.

Background:

Normally, in order to begin any read/write access to a transponder, the TWN4 system provides the function
SearchTag. This function searches for a transponder and keeps the RF in appropriate condition to allow
subsequent read- and write access.

This sequence is not applicable for the AT55xx family of transponders for two reasons:

• The transponder does not contain a serial number

• The transponder does not send data in a well-known standard format

The way out of this situation is the function AT55_Begin, which does not return any transponder data but
turns on RF field for subsequent read-/write operations.

16.2 Read Data

Requirements:

The firmware of TWN4 supports read of data only, if the modulation of the transponder is configured to
manchester coding with a bitrate of RF/128 up to RF/8.

Furthermore, TWN4 can be set up to support sequence terminator turned on or off.

The default setup is RF/64 with sequence terminator turned off. In order to choose a different configuration
the function SetParameters must be used. Here is an example of how use of RF/32 is programmed:

const byte MyRF32Config[] = { AT55_BITRATE, 1, 32, TLV_END };
SetParameters(MyRF32Config,sizeof(MyRF32Config));

Page 70 of 237

16 AT55xx-Specific Transponder Operations

Example of how to turn on sequence terminator on and use RF/40:

const byte MyRF40Config[] =
{

AT55_OPTIONS, 1, AT55_OPT_SEQUENCETERMINATOR,
AT55_BITRATE, 1, 40,
TLV_END

};
SetParameters(MyRF40Config,sizeof(MyRF40Config));

16.2.1 AT55_ReadBlock

Read one block (4 bytes) from the transponder.

bool AT55_ReadBlock(int Address,byte *Data);

Parameters:

int Address Specifies the address of the page to be read.

byte *Data Pointer to an array of 4 bytes which contains data read from the transponder.

Return: If the operation was successful, the return value is true, otherwise it is
false.

16.2.2 AT55_ReadBlockProtected

Read one block (4 bytes) from a password-protected transponder.

bool AT55_ReadBlockProtected(int Address,byte *Data,const byte *Password);

Parameters:

int Address Specifies the address of the page to be read.

byte *Data Pointer to an array of 4 bytes which contains data read from the transponder.

const byte *Password Pointer to an array of 4 bytes which contains the password.

Return: If the operation was successful, the return value is true, otherwise it is
false.

16.3 Write Data

16.3.1 AT55_WriteBlock

Write one block (4 bytes) to the transponder.

bool AT55_WriteBlock(int Address,const byte *Data);

Parameters:

int Address Specifies the address of the page to be written.

const byte *Data Pointer to an array of 4 bytes which contains data to be written to the
transponder.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 71 of 237

16 AT55xx-Specific Transponder Operations

16.3.2 AT55_WriteBlockProtected

Write one block (4 bytes) to a password-protected transponder.

bool AT55_WriteBlockProtected(int Address,const byte *Data,const byte *Password);

Parameters:

int Address Specifies the address of the page to be written.

const byte *Data Pointer to an array of 4 bytes which contains data to be written to the
transponder.

const byte *Password Pointer to an array of 4 bytes which contains the password.

Return: If the operation was successful, the return value is true, otherwise it is
false.

16.3.3 AT55_WriteBlockAndLock

Write one block (4 bytes) to a transponder and lock the written data. Locking data means, that it is not
possible to modify data contained in this block.

bool AT55_WriteBlockAndLock(int Address,const byte *Data);

Parameters:

int Address Specifies the address of the page to be written.

const byte *Data Pointer to an array of 4 bytes which contains data to be written to the
transponder.

Return: If the operation was successful, the return value is true, otherwise it is
false.

16.3.4 AT55_WriteBlockProtectedAndLock

Write one block (4 bytes) to a password-protected transponder and lock the written data. Locking data
means, that it is not possible to modify data contained in this block.

bool AT55_WriteBlockProtectedAndLock(int Address,const byte *Data,const byte *Password);

Parameters:

int Address Specifies the address of the page to be written.

const byte *Data Pointer to an array of 4 bytes which contains data to be written to the
transponder.

const byte *Password Pointer to an array of 4 bytes which contains the password.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 72 of 237

17 TILF (TIRIS) Functions

17 TILF (TIRIS) Functions

This chapter describes functions for accessing Texas Instruments Low Frequency transponders (TILF).
This type of transponder was formerly also known as TIRIS.

Note:

It is highly recommended to also study datasheets of according transponders. Datasheets are available
from Texas Instruments.

17.1 Search Function

17.1.1 TILF_SearchTag

Search for a TILF tag. This function can be used directly instead of the general search function SearchTag.
The function doing a search for a TILF tag in two different ways: First, a tag is search via a call of func-
tion TILF_ChargeOnlyRead. Second, a tag is searched via function TILF_MUGeneralReadPage, address
3.

bool TILF_SearchTag(int *IDBitCount,byte *ID,int MaxIDBytes);

Parameters:

int *IDBitCount A pointer to an integer, which receives the number of actually read
bits(!). Due to the nature of the functions TILF_ChargeOnlyRead and
TILF_MUGeneralReadPage, the number of received bits is either 32 or 64.

byte *ID A pointer to an array of bytes, which receives the read ID. Due to the nature
of the functions TILF_ChargeOnlyRead and TILF_MUGeneralReadPage, the
number of received bytes is either 4 or 8.

int MaxIDBytes The maximum number of bytes, which will be copied to ID

Return: If the operation was successful, the return value is true, otherwise it is
false.

17.2 Single-Page Read/Write Function

17.2.1 TILF_ChargeOnlyRead

Search for a single page transponder. This might be a read-only or a read/write transponder. Only
transponders are detected, where ID is stored under use of a CCITT CRC. If a transponder is pro-
grammed in a different way, consider using TILF_ChargeOnlyReadLo, which allows to read entire content
of transponder W/O CRC check.

bool TILF_ChargeOnlyRead(byte *ReadData);

Page 73 of 237

17 TILF (TIRIS) Functions

Parameters:

byte *ReadData A pointer to an array of 8 bytes, which receives checked ID data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

17.2.2 TILF_ChargeOnlyReadLo

Search for a single page transponder. This might be a read-only or a read/write transponder. No CRC
check is performed, thus allowing to read also custom programmed tags. The interpretation of data should
be known by the solution builder.

bool TILF_ChargeOnlyReadLo(byte *ReadData);

Parameters:

byte *ReadData A pointer to an array of 16 bytes, which receives unchecked ID data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

17.2.3 TILF_SPProgramPage

Write data to a single-page read/write transponder by using CCITT CRC.

bool TILF_SPProgramPage(const byte *WriteData,byte *ReadData);

Parameters:

const byte
*WriteData

A pointer to an array of 8 bytes, which will be written to the transponder.

byte *ReadData A pointer to an array of 8 bytes, which receives checked response from the
transponder.

Return: If the operation was successful, the return value is true, otherwise it is
false.

17.2.4 TILF_SPProgramPageLo

Write data to a single-page read/write transponder.

bool TILF_SPProgramPageLo(const byte *WriteData,byte *ReadData);

Parameters:

const byte
*WriteData

A pointer to an array of 10 bytes, which will be written to the transponder.

byte *ReadData A pointer to an array of 16 bytes, which receives unchecked response from
the transponder.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 74 of 237

17 TILF (TIRIS) Functions

17.3 Multi-Page Read/Write Function

17.3.1 TILF_MPGeneralReadPage

General read of data from a multi-page transponder (MPT).

bool TILF_MPGeneralReadPage(int Address,byte *ReadData);

Parameters:

int Address The page address, where data will be read from.

byte *ReadData A pointer to an array of 8 bytes, which receives data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

17.3.2 TILF_MPSelectiveReadPage

Selective read of data from a multi-page transponder (SAMPT or SAMPTS).

bool TILF_MPSelectiveReadPage(
int Address,const byte *SelectiveAddress,byte *ReadData);

Parameters:

int Address The page address, where data will be read from.

const byte
*SelectiveAddress

Pointer to an array of 3 bytes (24 bits) which provides the selective address.

byte *ReadData A pointer to an array of 8 bytes, which receives data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

17.3.3 TILF_MPProgramPage

Program one page to a multi-page transponder (MPT).

bool TILF_MPProgramPage(
int Address,const byte *WriteData,byte *ReadData);

Parameters:

int Address The page address, where data will be programmed to.

const byte
*WriteData

A pointer to an array of 8 bytes, which will be programmed.

byte *ReadData A pointer to an array of 8 bytes, which receives data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

17.3.4 TILF_MPSelectiveProgramPage

Selective program of one page to a multi-page transponder (SAMPT or SAMPTS).

Page 75 of 237

17 TILF (TIRIS) Functions

bool TILF_MPSelectiveProgramPage(
int Address,const byte *SelectiveAddress,
const byte *WriteData,byte *ReadData);

Parameters:

int Address The page address, where data will be programmed to.

const byte
*SelectiveAddress

Pointer to an array of 3 bytes (24 bits) which provides the selective address.

const byte
*WriteData

A pointer to an array of 8 bytes, which will be programmed.

byte *ReadData A pointer to an array of 8 bytes, which receives data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

17.3.5 TILF_MPLockPage

Lock one page on a multi-page transponder (MPT).

bool TILF_MPLockPage(int Address,byte *ReadData);

Parameters:

int Address The page address, which will be locked.

byte *ReadData A pointer to an array of 8 bytes, which receives data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

17.3.6 TILF_MPSelectiveLockPage

Selective lock one page on a multi-page transponder (SAMPT or SAMPTS).

bool TILF_MPSelectiveLockPage(
int Address,const byte *SelectiveAddress,byte *ReadData);

Parameters:

int Address The page address, which will be locked.

const byte
*SelectiveAddress

Pointer to an array of 3 bytes (24 bits) which provides the selective address.

byte *ReadData A pointer to an array of 8 bytes, which receives data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

17.3.7 TILF_MPGeneralReadPageLo

General read of data from a multi-page transponder (MPT) W/O CRC-check.

bool TILF_MPGeneralReadPageLo(int Address,byte *ReadData);

Page 76 of 237

17 TILF (TIRIS) Functions

Parameters:

int Address The page address, where data will be read from.

byte *ReadData A pointer to an array of 16 bytes, which receives data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

17.3.8 TILF_MPSelectiveReadPageLo

Selective read of data from a multi-page transponder (SAMPT or SAMPTS) W/O CRC-check.

bool TILF_MPSelectiveReadPageLo(
int Address,const byte *SelectiveAddress,byte *ReadData);

Parameters:

int Address The page address, where data will be read from.

const byte
*SelectiveAddress

Pointer to an array of 3 bytes (24 bits) which provides the selective address.

byte *ReadData A pointer to an array of 16 bytes, which receives data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

17.3.9 TILF_MPProgramPageLo

Program one page to a multi-page transponder (MPT) W/O CRC-check.

bool TILF_MPProgramPageLo(
int Address,const byte *WriteData,byte *ReadData);

Parameters:

int Address The page address, where data will be programmed to.

const byte
*WriteData

A pointer to an array of 10 bytes, which will be programmed.

byte *ReadData A pointer to an array of 16 bytes, which receives data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

17.3.10 TILF_MPSelectiveProgramPageLo

Selective program of one page to a multi-page transponder (SAMPT or SAMPTS) W/O CRC-check.

bool TILF_MPSelectiveProgramPageLo(
int Address,const byte *SelectiveAddress,
const byte *WriteData,byte *ReadData);

Page 77 of 237

17 TILF (TIRIS) Functions

Parameters:

int Address The page address, where data will be programmed to.

const byte
*SelectiveAddress

Pointer to an array of 3 bytes (24 bits) which provides the selective address.

const byte
*WriteData

A pointer to an array of 10 bytes, which will be programmed.

byte *ReadData A pointer to an array of 16 bytes, which receives data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

17.3.11 TILF_MPLockPageLo

Lock one page on a multi-page transponder (MPT) W/O CRC-check.

bool TILF_MPLockPageLo(int Address,byte *ReadData);

Parameters:

int Address The page address, which will be locked.

byte *ReadData A pointer to an array of 16 bytes, which receives data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

17.3.12 TILF_MPSelectiveLockPageLo

Selective lock one page on a multi-page transponder (SAMPT or SAMPTS) W/O CRC-check.

bool TILF_MPSelectiveLockPageLo(
int Address,const byte *SelectiveAddress,byte *ReadData);

Parameters:

int Address The page address, which will be locked.

const byte
*SelectiveAddress

Pointer to an array of 3 bytes (24 bits) which provides the selective address.

byte *ReadData A pointer to an array of 16 bytes, which receives data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

17.4 Multi-Usage Read/Write Function

17.4.1 TILF_MUGeneralReadPage

General read of one page from a multi-usage transponder (MUSA).

bool TILF_MUGeneralReadPage(int Address,byte *ReadData);

Page 78 of 237

17 TILF (TIRIS) Functions

Parameters:

int Address The page address, where data will be read from.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

17.4.2 TILF_MUSelectiveReadPage

Selective read of one page from a multi-usage transponder (MUSA).

bool TILF_MUSelectiveReadPage(
int Address,int SelectiveAddress,byte *ReadData);

Parameters:

int Address The page address, where data will be read from.

int SelectiveAddress A value which specifies the 8-bit selective address.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

17.4.3 TILF_MUSpecialReadPage

Special read of one page from a multi-usage transponder (MUSA).

bool TILF_MUSpecialReadPage(
int Address,const byte *SpecialAddress1,
const byte *SpecialAddress2,byte *ReadData);

Parameters:

int Address The page address, where data will be read from.

const byte
*SpecialAddress1

Pointer to an array of 5 bytes (40 bits) which provides the special address 1.

const byte
*SpecialAddress2

Pointer to an array of 3 bytes (24 bits) which provides the special address 2.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

17.4.4 TILF_MUProgramPage

Program one page to a multi-usage transponder (MUSA).

bool TILF_MUProgramPage(int Address,const byte *WriteData,byte *ReadData);

Page 79 of 237

17 TILF (TIRIS) Functions

Parameters:

int Address The page address, where data will be programmed to.

const byte
*WriteData

A pointer to an array of 5 bytes, which will be programmed.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

17.4.5 TILF_MUSelectiveProgramPage

Selective program of one page to a multi-usage transponder (MUSA).

bool TILF_MUSelectiveProgramPage(
int Address,int SelectiveAddress,
const byte *WriteData,byte *ReadData);

Parameters:

int Address The page address, where data will be programmed to.

int SelectiveAddress A value which specifies the 8-bit selective address.

const byte
*WriteData

A pointer to an array of 5 bytes, which will be programmed.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

17.4.6 TILF_MUSpecialProgramPage

Special program of one page to a multi-usage transponder (MUSA).

bool TILF_MUSpecialProgramPage(
int Address,const byte *SpecialAddress1,
const byte *SpecialAddress2,const byte *WriteData,
byte *ReadData);

Parameters:

int Address The page address, where data will be programmed to.

const byte
*SpecialAddress1

Pointer to an array of 5 bytes (40 bits) which provides the special address 1.

const byte
*SpecialAddress2

Pointer to an array of 3 bytes (24 bits) which provides the special address 2.

const byte
*WriteData

A pointer to an array of 5 bytes, which will be programmed.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 80 of 237

17 TILF (TIRIS) Functions

17.4.7 TILF_MULockPage

Lock one page of a multi-usage transponder (MUSA).

bool TILF_MULockPage(int Address,byte *ReadData);

Parameters:

int Address The page address, which will be locked.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

17.4.8 TILF_MUSelectiveLockPage

Selective lock of one page of a multi-usage transponder (MUSA).

bool TILF_MUSelectiveLockPage(
int Address,int SelectiveAddress,byte *ReadData);

Parameters:

int Address The page address, which will be locked.

int SelectiveAddress A value which specifies the 8-bit selective address.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

17.4.9 TILF_MUSpecialLockPage

Special lock of one page of a multi-usage transponder (MUSA).

bool TILF_MUSpecialLockPage(
int Address,const byte *SpecialAddress1,
const byte *SpecialAddress2,byte *ReadData);

Parameters:

int Address The page address, which will be locked.

const byte
*SpecialAddress1

Pointer to an array of 5 bytes (40 bits) which provides the special address 1.

const byte
*SpecialAddress2

Pointer to an array of 3 bytes (24 bits) which provides the special address 2.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 81 of 237

18 ISO14443 Transponder Operations

18 ISO14443 Transponder Operations

This chapter handles specific operations for transparent access of ISO14443A/B compliant transpon-
ders. Before these functions can be used, the transponder must have been selected using the function
SearchTag(...).

18.1 ISO14443A

18.1.1 Get ATQA

This function delivers the ATQA (Answer To Request TypeA) of the last detected ISO14443A compliant
transponder.

bool ISO14443A_GetATQA(byte* ATQA);

Parameters:

byte* ATQA After successful completion of this function, the buffer referred by this pa-
rameter holds the ATQA of the transponder. The function returns two bytes
of data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

18.1.2 Get SAK

This function delivers the SAK (Select Acknowledge) of the last detected ISO14443A compliant transpon-
der.

bool ISO14443A_GetSAK(byte* SAK);

Parameters:

byte* SAK After successful completion of this function, the buffer referred by this pa-
rameter holds the SAK of the transponder. The function returns one byte of
data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

18.1.3 Get ATS

This function delivers the ATS (Answer To Select) of a ISO14443A layer 4 transponder.

Page 82 of 237

18 ISO14443 Transponder Operations

bool ISO14443A_GetATS
(
byte* ATS,
int* ATSByteCnt,
int MaxATSByteCnt
);

Parameters:

byte* ATS After successful completion of this function, the buffer referred by this pa-
rameter holds the ATS which was read from the transponder. Take care for
adequate dimensioning.

int* ATSByteCnt After successful completion of this function, this parameter holds the number
of bytes, the ATS contains.

int MaxATSByteCnt This parameter holds the array-size of ATS in bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

18.2 ISO14443B

18.2.1 Get ATQB

This function delivers the ATQB (Answer To Request TypeB) of the last detected ISO14443B compliant
transponder.
Note: This function cannot be called on TWN4 MultiTech Legic.

bool ISO14443B_GetATQB(byte* ATQB, int* ATQBByteCnt, int MaxATQBByteCnt);

Parameters:

byte* ATQB After successful completion of this function, the buffer referred by this pa-
rameter holds the ATQB of the transponder. Take care for adequate dimen-
sioning, the ATQB usually has 12 or 13 bytes in length.

int* ATQBByteCnt After successful completion of this function, this parameter holds the number
of bytes of ATQB.

int MaxATQBByteCnt This parameter holds the array-size of ATQB in bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

18.2.2 Get Answer to ATTRIB

This function delivers the transponder’s answer to the ATTRIB command, which is sent automatically
during selection process by the reader.
Note: This function cannot be called on TWN4 MultiTech Legic.

bool ISO14443B_GetAnswerToATTRIB
(
byte* AnswerToATTRIB,
int* AnswerToATTRIBByteCnt,
int MaxAnswerToATTRIBByteCnt
);

Page 83 of 237

18 ISO14443 Transponder Operations

Parameters:

byte* AnswerToATTRIB After successful completion of this function, the buffer referred by this pa-
rameter holds the AnswerToATTRIB of the transponder. Take care for ade-
quate dimensioning, AnswerToATTRIB can have one or more bytes in length.

int*
AnswerToATTRIBByteCnt

After successful completion of this function, this parameter holds the number
of bytes of AnswerToATTRIB.

int
MaxAnswerToATTRIBByteCnt

This parameter holds the array-size of AnswerToATTRIB in bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

18.3 Check Presence

This function can be used to probe if a ISO14443-4 transponder is still in reading range. The internal state
of the transponder remains unchanged.
Note: This function cannot be called on TWN4 MultiTech Legic.

bool ISO14443_4_CheckPresence(void);

Parameters: None.

Return: If the transponder is still in range, the return value is true, otherwise it is
false.

18.4 ISO14443-3 Transparent Data Exchange

This function can be used for transparent exchange of data between reader and ISO14443-3 transpon-
ders. The function does not calculate any CRC or other overhead by itself, so if necessary this has to be
conducted on host side.

bool ISO14443_3_TDX
(
byte* TXRX,
int TXByteCnt,
int* RXByteCnt,
int MaxRXByteCnt
);

Page 84 of 237

18 ISO14443 Transponder Operations

Parameters:

byte* TXRX This buffer holds the byte-string that shall be transmitted to the transponder.
The response of the transponder is also returned by this parameter. Take
care for adequate dimensioning.

int TXByteCnt This parameter holds the number of bytes that shall be transmitted to the
transponder.

int* RXByteCnt After successful completion of this function, this parameter holds the number
of bytes that the transponder response contains.

int MaxRXByteCnt This parameter holds the array-size of TXRX in bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

18.5 ISO14443-4 Transparent Data Exchange

This function can be used for transparent exchange of data between reader and ISO14443-4 transpon-
ders. All framing of layer 4 subset is already done by the reader, so only the payload needs to be passed
to the function.

bool ISO14443_4_TDX
(
byte* TXRX,
int TXByteCnt,
int* RXByteCnt,
int MaxRXByteCnt
);

Parameters:

byte* TXRX This buffer holds the byte-string that shall be transmitted to the transponder.
The response of the transponder is also returned by this parameter. Take
care for adequate dimensioning.

int TXByteCnt This parameter holds the number of bytes that shall be transmitted to the
transponder.

int* RXByteCnt After successful completion of this function, this parameter holds the number
of bytes that the transponder response contains.

int MaxRXByteCnt This parameter holds the array-size of TXRX in bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

18.6 Multiple Tag Handling

TWN4 is capable of handling multiple ISO14443A tags that are simultaneously present in the RF field.
Use the following functions to inventorize the field and select one of the discovered transponders for sub-
sequent operations.

Page 85 of 237

18 ISO14443 Transponder Operations

18.6.1 Search for Transponders

Use this function to search the RF field for ISO14443A transponders. The result is a list of the UID of the
respective transponders.

bool ISO14443A_SearchMultiTag
(
int* UIDCnt,
int* UIDListByteCnt,
byte* UIDList,
int MaxUIDListByteCnt
);

Parameters:

int* UIDCnt This parameter holds the number of found transponder UIDs.

int* UIDListByteCnt This parameter holds the number of valid bytes of the UID list.

byte* UIDList This parameter holds the list of found UIDs. Every entry is preceeded
by a single byte representing the respective UID length, e.g. the two
transponder IDs 11223344 and 00010203040506 would be coded as fol-
lows: 0411223340700010203040506.

int MaxUIDListByteCnt This parameter holds the array-size of UIDList in bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

18.6.2 Select Transponder

Use this function to select one of the discovered transponders for further operations.

bool ISO14443A_SelectTag(const byte* UID, int UIDByteCnt);

Parameters:

const byte* UID Specify the UID of the transponder to be selected.

int UIDByteCnt This parameter holds the byte count of the specified UID.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 86 of 237

19 MIFARE Classic Specific Transponder Operations

19 MIFARE Classic Specific Transponder
Operations

Sector 0

Sector 1

Sector 2

Sector 3

Sector 4

Sector 5

Sector 6

Sector 7

Sector 8

Sector 9

Sector 10

Sector 11

Sector 12

Sector 13

Sector 14

Sector 15

Key A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Key B

Block 0

Block 1

Block 2

Block 3 Access Rights

Figure 19.1: Memory layout of a MIFARE Classic 1K transponder

Page 87 of 237

19 MIFARE Classic Specific Transponder Operations

The memory of MIFARE Classic transponders is organized in sectors and blocks. In case of MIFARE
Classic 1K, the memory is divided into 16 sectors, each sector holds 4 blocks. Each block holds 16 bytes
of data. Each sector is secured by two keys, Key A and Key B which are always located in the last block of
a sector (sector trailer). In order to access the respective sector, a login using one of the two keys has to be
performed. Once logged in, the data blocks are accessible for read-, write- or value-operations. Each key
may be equipped with certain access rights, the access rights are coded in byte 6, 7 and 8 of the sector
trailer. Byte 9 is available for data storage.
In case of MIFARE Classic 4K, the memory layout of sector addresses 0 to 31 is compatible to the 1K
version, from sector 32 to 39, each sector holds 16 data blocks.
In any case, block 0 of sector 0 is called manufacturer block, and cannot be overwritten. Within this block,
the UID is stored and some manufacturer specific data.

19.1 Login

In order to do any operation on a sector of a MIFARE Classic transponder, a login to the respective sector
has to be performed. Each sector holds two keys, Key A and Key B. Depending on the access conditions
of the sector, the appropriate key shall be used for the desired operation. Both the keys and the access
conditions are stored in the sector trailer.

bool MifareClassic_Login
(
const byte* Key,
byte KeyType,
int Sector
);

Parameters:

const byte* Key Pointer to an array of bytes, which has to contain six bytes. These bytes
represent the key for the login process.

byte KeyType Specifies, with which key the operation has to be performed. This is one of
the defined constants KEYA or KEYB.

int Sector Specifies the sector for the login.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Key (hex) Description

FF FF FF FF FF FF Default Transport Key A/B (NXP)

A0 A1 A2 A3 A4 A5 Default Transport Key A (Infineon)

B0 B1 B2 B3 B4 B5 Default Transport Key B (Infineon)

D3 F7 D3 F7 D3 F7 Default key for NDEF-formatted tags

Table 19.1: Well-known keys for MIFARE Classic transponders

Page 88 of 237

19 MIFARE Classic Specific Transponder Operations

19.2 Read/Write Data

19.2.1 Read Data Block

Read 16 bytes of data from a data-block of the transponder. Please note: If a sector trailer is read, the
respective key which was used for login is represented by zeros.

bool MifareClassic_ReadBlock
(
int Block,
byte* Data
);

Parameters:

int Block Specify the address of the block to be read. The valid range of this parame-
ter is between 0 and 255.

byte* Data This parameter holds the data which was read from the tag if the operation
was successful. Note that this function always reads 16 bytes of data, so the
minimum array size of Data must be at least 16 bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

19.2.2 Write Data Block

Write 16 bytes of data to a data-block of the transponder. Special care must be taken when writing to a
sector trailer as a faulty setting of the access conditions can make the sector unaccessible.

bool MifareClassic_WriteBlock
(
int Block,
const byte* Data
);

Parameters:

int Block Specify the address of the block to be written. The valid range of this pa-
rameter is between 0 and 255.

const byte* Data This parameter holds the data which shall be written to the tag. Note that
this function always writes 16 bytes of data, so the minimum array size of
Data shall be at least 16 bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 89 of 237

19 MIFARE Classic Specific Transponder Operations

19.3 Handling of Value Blocks

19.3.1 Read Value Block

Read the value stored in a MIFARE Classic compliant value block.

bool MifareClassic_ReadValueBlock
(
int Block,
int* Value
);

Parameters:

int Block Specify the address of the block to be read. The valid range of this param-
eter is between 0 and 255. Note that this function does not work with sector
trailers.

int* Value This parameter holds the value which was read from the tag if the operation
was successful.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Remark: This function checks if the block has a valid value block format. If this is not the case, the
function returns false.

19.3.2 Write Value Block

Format a data block to a MIFARE Classic compliant value block and assign an initial value.

bool MifareClassic_WriteValueBlock
(
int Block,
int Value
);

Parameters:

int Block Specify the address of the block to be formatted. The valid range of this
parameter is between 0 and 255. Note that this function does not work with
sector trailers.

int Value This parameter holds the initial value of the value block.

Return: If the operation was successful, the return value is true, otherwise it is
false.

19.3.3 Increment Value Block

Credit a value block with a given increment value.

Page 90 of 237

19 MIFARE Classic Specific Transponder Operations

bool MifareClassic_IncrementValueBlock
(
int Block,
int Value
);

Parameters:

int Block Specify the address of the block to be incremented. The valid range of this
parameter is between 0 and 255. Note that this function does not work with
sector trailers.

int Value This parameter holds the increment value.

Return: If the operation was successful, the return value is true, otherwise it is
false.

19.3.4 Decrement Value Block

Debit a value block with a given decrement value.

bool MifareClassic_DecrementValueBlock
(
int Block,
int Value
);

Parameters:

int Block Specify the address of the block to be decremented. The valid range of this
parameter is between 0 and 255. Note that this function does not work with
sector trailers.

int Value This parameter holds the decrement value.

Return: If the operation was successful, the return value is true, otherwise it is
false.

19.3.5 Copy Value Block

Copy a value block within a sector.

bool MifareClassic_CopyValueBlock
(
int SourceBlock,
int DestBlock
);

Parameters:

int SourceBlock Specify the address of the source block.

int DestBlock Specify the address of the destination block.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 91 of 237

20 MIFARE Plus Specific Transponder Operations

20 MIFARE Plus Specific Transponder Operations

MIFARE Plus is mostly compatible to MIFARE Classic, but comes with several enhancements regarding
security and functionality. The memory layout is compatible to MIFARE Classic. MIFARE Plus transpon-
ders incorporate four different levels of operation, these are called Security Level (SL).
Blank transponders are usually sold in SL0, which is used for personalisation of the transponder. Within
this level, the keys and data blocks can be written. When the personalisation process has finished, the
transponder has to be switched to a higher security level.
In usual cases, this is SL1 where the transponder is compatible to Mifare Classic, this means the login
process, memory layout and read/write operations are the same. In this case refer to the API description
of MIFARE Classic.
In case of MIFARE Plus X, the transponder may be switched from SL1 to SL2 where an additional AES
authentication becomes necessary before any memory operation is possible. All subsequent Crypto1 op-
erations are then depending on this authentication, as a session key is calculated and the Crypto1 key is
diversified for this session. So, after AES authentication, the API functions for MIFARE Classic have to be
used for accessing the memory.
MIFARE Plus S or X can be switched to SL3, where a AES authentication is necessary to access the
transponder memory. In case of MIFARE Plus X all operations are done fully encrypted, in case of MI-
FARE Plus S all operations are done in plain but with computation of an additional MAC. For memory
operations in SL3, the API functions described in the following chapters shall be used.
Please note, once a MIFARE Plus transponder has been switched to a higher security level, it cannot be
switched back again.

20.1 Personalisation

Personalisation can only be done if the transponder is operating in SL0. As all communication is done
in plain, this process should be conducted at a secure place. When all personalisation data has been
written, the personalisation must be finished by issuing the function Commit Personalisation. After that,
the personalisation becomes valid and the transponder is switched to SL1.

20.1.1 Write Personalisation

Use this function to write any personalisation data to a specific block of the transponder.

bool MFP_WritePerso(int BlockNr, const byte* Data);

Page 92 of 237

20 MIFARE Plus Specific Transponder Operations

Parameters:

int BlockNr Specify the block number to be written. This can either be the number of a
sector block or a AES key.

const byte* Data Specify the data to be written with this parameter. The function expects
always 16 bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

20.1.2 Commit Personalisation

This function shall be used to switch the transponder to SL1 when all personalisation has been finished.
After calling this function, the transponder has to be reselected in order to access it again.

bool MFP_CommitPerso(void);

Parameters: None

Return: If the operation was successful, the return value is true, otherwise it is
false.

20.2 Authenticate AES

Use this function to do a mutual authentication in AES with the transponder. The key may either be a
sector key or a special one like a level switch key. In case of MIFARE Plus running in SL2, a preceding
AES authentication is necessary before any following memory operations which are conducted in Crypto1.
A typical transaction flow looks like this:

Search Tag
⇓

Authenticate AES
⇓

Mifare Classic Login
⇓

Mifare Classic Read/Write Data

bool MFP_Authenticate(int CryptoEnv, int KeyBNr, const byte* Key);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. All
consecutive operations with the transponder shall be done using the speci-
fied environment.

int KeyBNr Specify the key number that shall be used for authentication. This can either
be a sector key or a special key like a level switch key.

const byte* Key Specify the key that shall be used for authentication. For AES, the key must
have a key length of 16 bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 93 of 237

20 MIFARE Plus Specific Transponder Operations

20.3 Security Level 3

In Security Level 3 all memory related operations require a preceding AES authentication with the respec-
tive key. Please note, MIFARE Plus S does not support all the functionality of a MIFARE Plus X, e.g.
handling of value blocks is not supported here.

20.3.1 Read/Write Data

20.3.1.1 Read Data Block

Use this function to read a data block from a MIFARE Plus transponder.

bool MFP_ReadBlock(int CryptoEnv, int Block, byte* Data);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants.

int Block Specify the number of the block that shall be read.

byte* Data This parameter holds the data which was read from the tag if the operation
was successful. Note that this function always reads 16 bytes of data, so the
minimum array size of Data must be at least 16 bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

20.3.1.2 Write Data Block

Use this function to write data to a block of a MIFARE Plus transponder.

bool MFP_WriteBlock(int CryptoEnv, int Block, const byte* Data);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants.

int Block Specify the number of the block that shall be written.

const byte* Data This parameter holds the data which shall be written to the tag. Note that
this function always writes 16 bytes of data, so the minimum array size of
Data must be at least 16 bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 94 of 237

20 MIFARE Plus Specific Transponder Operations

20.3.2 Handling of Value Blocks

20.3.2.1 Read Value Block

Use this function to read the value stored in a MIFARE compliant value block.

bool MFP_ReadValueBlock(int CryptoEnv, int Block, int* Value);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants.

int Block Specify the address of the block to be read. The valid range of this param-
eter is between 0 and 255. Note that this function does not work with sector
trailers.

int* Value This parameter holds the value which was read from the tag if the operation
was successful.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Remark: This function checks if the block has a valid value block format. If this is not the case, the
function returns false.

20.3.2.2 Write Value Block

Format a data block to a MIFARE compliant value block and assign an initial value.

bool MFP_WriteValueBlock(int CryptoEnv, int Block, int Value);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants.

int Block Specify the address of the block to be formatted. The valid range of this
parameter is between 0 and 255. Note that this function does not work with
sector trailers.

int Value This parameter holds the initial value of the value block.

Return: If the operation was successful, the return value is true, otherwise it is
false.

20.3.2.3 Increment Value Block

Credit a value block with a given increment value.

bool MFP_IncrementValueBlock(int CryptoEnv, int Block, int Value);

Page 95 of 237

20 MIFARE Plus Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants.

int Block Specify the address of the block to be incremented. The valid range of this
parameter is between 0 and 255. Note that this function does not work with
sector trailers.

int Value This parameter holds the increment value.

Return: If the operation was successful, the return value is true, otherwise it is
false.

20.3.2.4 Decrement Value Block

Debit a value block with a given decrement value.

bool MFP_DecrementValueBlock(int CryptoEnv, int Block, int Value);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants.

int Block Specify the address of the block to be decremented. The valid range of this
parameter is between 0 and 255. Note that this function does not work with
sector trailers.

int Value This parameter holds the decrement value.

Return: If the operation was successful, the return value is true, otherwise it is
false.

20.3.2.5 Copy Value Block

Copy a value block within a sector.

bool MFP_CopyValueBlock(int CryptoEnv, int SourceBlock, int DestBlock);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants.

int SourceBlock Specify the address of the source block.

int DestBlock Specify the address of the destination block.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 96 of 237

21 MIFARE Ultralight/Ultralight C/Ultralight EV1 Specific Transponder Operations

21 MIFARE Ultralight/Ultralight C/Ultralight EV1
Specific Transponder Operations

21.1 Authentication (Ultralight C only)

Depending on the security settings of the transponder, a login with the valid transponder key might be
necessary prior performing any further operation.

21.1.1 Authentication with given Key

Use this function to authenticate at a Mifare Ultralight C transponder with a given key.

bool MifareUltralightC_Authenticate(const byte* Key);

Parameters:

const byte* Key Pointer to an array of bytes, which has to contain 16 bytes. These bytes
represent the key for the authentication process.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Key (hex) Description

49 45 4D 4B 41 45 52 42
21 4E 41 43 55 4F 59 46

Default Transport Key

Table 21.1: Well-known key for MIFARE Ultralight C transponders

Page 97 of 237

21 MIFARE Ultralight/Ultralight C/Ultralight EV1 Specific Transponder Operations

21.1.2 Authentication using SAM Card

Use this function to authenticate at a Mifare Ultralight C transponder with a key stored on a SAM card.
Depending on the security settings of the SAM card, an additional authentication between reader an SAM
might be necessary prior issuing this command.

bool MifareUltralightC_SAMAuthenticate
(
int KeyNo,
int KeyVersion,
const byte* DIVInput,
int DIVByteCnt
);

Parameters:

int KeyNo Specify the number of the SAM key entry that shall be used for authentica-
tion.

int KeyVersion Specify the key version of the SAM key entry that shall be used for authen-
tication.

const byte* DIVInput Specify optional diversification input used for authentication.

int DIVByteCnt Specify the number of bytes for diversification input. Valid values are 0 to
31.

Return: If the operation was successful, the return value is true, otherwise it is
false.

21.2 Write Key from SAM to Transponder Key Storage Area

Use this function to transfer a key from a SAM card to the key storage area of a Mifare Ultralight C transpon-
der. Please note that the key stored on the SAM card must be dumpable. Depending on the security
settings of the SAM card, an additional authentication between reader an SAM might be necessary prior
issuing this command.

bool MifareUltralightC_WriteKeyFromSAM
(
int KeyNo,
int KeyVersion,
const byte* DIVInput,
int DIVByteCnt
);

Page 98 of 237

21 MIFARE Ultralight/Ultralight C/Ultralight EV1 Specific Transponder Operations

Parameters:

int KeyNo Specify the number of the SAM key entry that shall be transfered.

int KeyVersion Specify the key version of the SAM key entry.

const byte* DIVInput Specify optional diversification input.

int DIVByteCnt Specify the number of bytes for diversification input. Valid values are 0 to
31.

Return: If the operation was successful, the return value is true, otherwise it is
false.

21.3 Read/Write Data

21.3.1 Read Page

Though the page size of this transponder family is 4 bytes, the transponder always returns 16 bytes of data.
This is achieved by reading four consecutive data pages, e.g. if page 4 is to be read, the transponder also
returns the content of page 5, 6 and 7. The transponder incorporates an integrated roll-back mechanism
if reading is done beyond the last physical available page address. E.g., in case of reading page 14 of
MIFARE Ultralight this would result in reading page 14, 15, 0, 1.

bool MifareUltralight_ReadPage
(
int Page,
byte* Data
);

Parameters:

int Page Specify the address of the page to be read. The valid range of this parameter
is between 0 and 15 (Ultralight) or 0 and 43 (Ultralight C).

byte* Data This parameter holds the data which was read from the tag if the operation
was successful. Note that this function always reads 16 bytes of data, so the
minimum array size of Data must be at least 16 bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

21.3.2 Write Page

Write 4 bytes of data to a data-page of the transponder. Compared to the read-function, this function pro-
cesses only one page at once.

bool MifareUltralight_WritePage
(
int Page,
const byte* Data
);

Page 99 of 237

21 MIFARE Ultralight/Ultralight C/Ultralight EV1 Specific Transponder Operations

Parameters:

int Page Specify the address of the page to be written. The valid range of this param-
eter is between 2 and 15 (Ultralight) or 2 and 47 (Ultralight C).

const byte* Data This parameter holds the data which shall be written to the tag. Note that
this function always writes 4 bytes of data, so the minimum array size of Data
must be at least 4 bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

21.4 Mifare Ultralight EV1

21.4.1 Fast Read

The Fast Read function reads a number of pages beginning at a starting page from the transponder.

bool MifareUltralightEV1_FastRead(int StartPage, int NumberOfPages, byte* Data);

Parameters:

int StartPage Specify the address of the starting page.

int NumberOfPages Specify the number of pages to be read.

byte* Data This buffer holds the received data from the tag. Take care for proper di-
mensioning, the buffer size must be at least NumberOfPages * 4.

Return: If the operation was successful, the return value is true, otherwise it is
false.

21.4.2 Increment Counter

Use this function to increment of the 3 one-way counters.

bool MifareUltralightEV1_IncCounter(int CounterAddr, int IncrValue);

Parameters:

int CounterAddr Specify the address of the counter to be incremented.

int IncrValue Specify the increment value.

Return: If the operation was successful, the return value is true, otherwise it is
false.

21.4.3 Read Counter

Use this function to read the value of one of the 3 one-way counters.

bool MifareUltralightEV1_ReadCounter(int CounterAddr, int* CounterValue);

Page 100 of 237

21 MIFARE Ultralight/Ultralight C/Ultralight EV1 Specific Transponder Operations

Parameters:

int CounterAddr Specify the address of the counter to be read.

int* CounterValue This parameter holds the returned counter value.

Return: If the operation was successful, the return value is true, otherwise it is
false.

21.4.4 Read ECC Signature

Use this function to read the factory programmed 32 byte ECC signature, to verify NXP Semiconductors
as the silicon vendor.

bool MifareUltralightEV1_ReadSig(byte* ECCSig);

Parameters:

byte* ECCSig This buffer holds the returned ECC signature. The required buffer size is 32
bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

21.4.5 Get Transponder Information

Use this function to retrieve information about the transponder such as product version or storage size.

bool MifareUltralightEV1_GetVersion(byte* Version);

Parameters:

byte* Version This buffer holds 8 bytes of version information.

Return: If the operation was successful, the return value is true, otherwise it is
false.

21.4.6 Password Authentication

Use this function for password authentication. For authentication, a 4 bytes password and a 2 bytes ac-
knowledge are required.

bool MifareUltralightEV1_PwdAuth(const byte* Password, const byte* PwdAck);

Parameters:

const byte* Password The 4 bytes password is specified by this parameter.

const byte* PwdAck This buffer holds 2 bytes of Password Acknowledge.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 101 of 237

21 MIFARE Ultralight/Ultralight C/Ultralight EV1 Specific Transponder Operations

21.4.7 Check Tearing Event

Use this function to check if a tearing event has happened at a specific counter.

bool MifareUltralightEV1_CheckTearingEvent(int CounterAddr, byte* ValidFlag);

Parameters:

int CounterAddr Specify the address of the counter to be checked.

byte* ValidFlag The ValidFlag is returned by this parameter. If no tearing event has hap-
pened, the returned value is 0xBD.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 102 of 237

22 NTAG Specific Transponder Operations

22 NTAG Specific Transponder Operations

22.1 Read/Write Data

22.1.1 Read Page

Though the page size of this transponder family is 4 bytes, the transponder always returns 16 bytes of data.
This is achieved by reading four consecutive data pages, e.g. if page 4 is to be read, the transponder also
returns the content of page 5, 6 and 7. The transponder incorporates an integrated roll-back mechanism if
reading is done beyond the last physical available page address. The function is available for all members
of the NTAG transponder family.

bool NTAG_Read(int Page, byte* Data);

Parameters:

int Page Specify the address of the page to be read. The valid range of this parameter
depends on the transponder type.

byte* Data This parameter holds the data which was read from the tag if the operation
was successful. Note that this function always reads 16 bytes of data, so the
minimum array size of Data must be at least 16 bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

22.1.2 Write Page

Write 4 bytes of data to a data-page of the transponder. Compared to the read-function, this function pro-
cesses only one page at once. The function is available for all members of the NTAG transponder family.

bool NTAG_Write(int Page, const byte* Data);

Parameters:

int Page Specify the address of the page to be written. The valid range of this param-
eter depends on the transponder type.

const byte* Data This parameter holds the data which shall be written to the tag. Note that
this function always writes 4 bytes of data, so the minimum array size of Data
must be at least 4 bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 103 of 237

22 NTAG Specific Transponder Operations

22.1.3 Fast Read

The Fast Read function reads a number of pages beginning at a starting page from the transponder. The
function is supported by NTAG21x and NT3H1xxx transponders.

bool NTAG_FastRead(int StartPage, int NumberOfPages, byte* Data);

Parameters:

int StartPage Specify the address of the starting page.

int NumberOfPages Specify the number of pages to be read.

byte* Data This buffer holds the received data from the tag. Take care for proper di-
mensioning, the buffer size must be at least NumberOfPages * 4.

Return: If the operation was successful, the return value is true, otherwise it is
false.

22.2 Miscellaneous functions

22.2.1 Read Counter

This function reads the value of the one-way counter. The function is supported by NTAG21x transponders.
Please note that the NFC_CNT_EN bit in ACCESS configuration byte must be set in order to make this function
work.

bool NTAG_ReadCounter(int* CounterValue);

Parameters:

int* CounterValue This parameter holds the returned counter value.

Return: If the operation was successful, the return value is true, otherwise it is
false.

22.2.2 Read ECC Signature

Use this function to read the factory programmed 32 byte ECC signature, to verify NXP Semiconductors
as the silicon vendor. The function is supported by NTAG21x transponders.

bool NTAG_ReadSig(byte* ECCSig);

Parameters:

byte* ECCSig This buffer holds the returned ECC signature. The required buffer size is 32
bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 104 of 237

22 NTAG Specific Transponder Operations

22.2.3 Get Transponder Information

Use this function to retrieve information about the transponder such as product version or storage size.
The function is supported by NTAG21x and NT3H1xxx transponders.

bool NTAG_GetVersion(byte* Version);

Parameters:

byte* Version This buffer holds 8 bytes of version information.

Return: If the operation was successful, the return value is true, otherwise it is
false.

22.2.4 Password Authentication

Use this function for password authentication. For authentication, a 4 bytes password and a 2 bytes ac-
knowledge are required. The function is supported by NTAG21x transponders.

bool NTAG_PwdAuth(const byte* Password, const byte* PwdAck);

Parameters:

const byte* Password The 4 bytes password is specified by this parameter.

const byte* PwdAck This buffer holds 2 bytes of Password Acknowledge.

Return: If the operation was successful, the return value is true, otherwise it is
false.

22.2.5 Select Sector

Use this function to perform a sector select in order o switch between different memory sectors of a
NT3H1XXX.

bool NTAG_SectorSelect(int Sector);

Parameters:

int Sector Specify the sector to be selected.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 105 of 237

23 DESFire Specific Transponder Operations

23 DESFire Specific Transponder Operations

The memory of a DESFire transponder is organized as a flexible file system. The transponder can hold
up to 28 applications and each application may contain up to 32 files of different type and size. Each
application can be secured by up to 14 cryptographic keys which are stored in the applications’s internal
key file. Applications are identified by a number, which must be unambiguous on the transponder. The
same rule applies to files within applications, these are identified by numbers which must be unambiguous
within the application.
By default, there exists a root-application with the identifier 0x000000 which defines the so-called transpon-
der level. This application cannot hold any files, it is intended to be used for basic administration of the
transponder.

Card

Application 1

Application 2

Application 3

Key File

Data File 1

Data File 2

Data File 3

Figure 23.1: DESFire memory layout

A simple use-case could be: Search for a transponder, select the desired application, perform an authen-
tication with the respective key (if required), access data file for read or write operation.

Page 106 of 237

23 DESFire Specific Transponder Operations

Search

Transponder

Select Application

Authentication

necessary ?

Authenticate

Yes

Read/Write Data

No

Figure 23.2: Simple way to gain access to the file system

23.1 Security Related Operations

23.1.1 Authenticate

This function shall be used to perform a mutual three pass authentication between reader and transponder.
The function supports both 3DES, 3K3DES and AES cryptography. In order to support both the DESFire
EV1 transponder family and the older DESFire MF3ICD40, the function incorporates a so-called Compati-
ble Mode.
After successful authentication, a session-key is generated which is used for all further cryptographic op-
erations. The authenticated state is invalidated in case of selecting an application, changing the key which
was used for the current authentication or a failed authentication.

Page 107 of 237

23 DESFire Specific Transponder Operations

On transponder level, depending on the security configuration, an authentication with the transponder
master key may be required to perform specific operations:

• Gather information on the transponder

• Change the transponder master key

• Change the transponder master key settings

• Create/delete applications

On application level, depending on the configuration, an authentication may be required to perform specific
operations:

• Gather information about the application

• Change the keys of the application

• Create/delete files within the application

• Change access rights

• Access data files

bool DESFire_Authenticate
(
int CryptoEnv,
int KeyNoTag,
const byte* Key,
int KeyByteCount,
int KeyType,
int Mode
);

Page 108 of 237

23 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. All
consecutive operations with the transponder shall be done using the speci-
fied environment.

int KeyNoTag Specify the key number that shall be used for authentication. On transpon-
der level, only key 0 is valid for authentication. On application level, one
can specify up to 14 keys which can be used for authentication. Both on
transponder and application level, key 0 identifies the respective master key.

const byte* Key Specify the key that shall be used for authentication. For 3DES/AES, the
key must have a key length of 16 bytes, for 3K3DES the key must have a
key length of 24 bytes.

int KeyByteCount Specify the key length of the key. Use one of the predefined constants
DESF_KEYLEN_3DES, DESF_KEYLEN_3K3DES or DESF_KEYLEN_AES.

int KeyType Specify the type of the specified key. Use one of the predefined constants
DESF_KEYTYPE_3DES, DESF_KEYTYPE_3K3DES or DESF_KEYTYPE_AES. The au-
thentication will be performed according to the specified key type.

int Mode Select either DESFire EV1 ISO-mode authentication or the compatible na-
tive DESFire authentication scheme. Use one of the predefined constants
DESF_AUTHMODE_COMPATIBLE or DESF_AUTHMODE_EV1. Note that 3K3DES or
AES cryptography cannot be used in compatible mode.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Remark: By default, the initial value of any key is all zeros. E.g. after creation of an application, all
keys have this initial value.

Example:

// Perform AES-authentication using key 0

const byte Key[16] =
{

0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF

};

if (DESFire_Authenticate(
CRYPTO_ENV0,
0,
Key,
DESF_KEYLEN_AES,
DESF_KEYTYPE_AES,
DESF_AUTHMODE_EV1))

{
DoSomething();

}

Page 109 of 237

23 DESFire Specific Transponder Operations

23.1.2 Get Key Version

This function can be used to read the current key version of any key that is stored on the transponder. If
the selected application is 0x000000, the command applies to the transponder master key and therefore
only key number 0 is valid for querying the key version.

bool DESFire_GetKeyVersion
(
int CryptoEnv,
int KeyNo,
byte* KeyVer
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int KeyNoTag Specify the key number that shall be queried.

byte* KeyVer The key version information is returned as one byte by this parameter.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Example:

// Query key version of key 0
byte KeyVer;

if (DESFire_GetKeyVersion(CRYPTO_ENV0,0,&KeyVer))
{

DoSomething();
}

23.1.3 Get Key Settings

This function allows to get information on the transponder- or application key settings. Depending on the
key settings, a preceding authentication with the respective master key may be required.

bool DESFire_GetKeySettings
(
int CryptoEnv,
TDESFireMasterKeySettings* MasterKeySettings
);

Page 110 of 237

23 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

TDESFireMasterKey
Settings*
MasterKeySettings

This structure receives the queried master key settings.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Members Length
(Bits)

Description

TDESFireKeySettings
KeySettings

8 This member holds the settings of the master key.

int NumberOfKeys 32 This member holds the number of available keys. The valid
range is 0 to 14.

int KeyType 32 This member holds the type of keys. Possible value
is one of the predefined constants DESF_KEYTYPE_3DES,
DESF_KEYTYPE_3K3DES or DESF_KEYTYPE_AES.

Table 23.1: Definition of TDESFireMasterKeySettings

Page 111 of 237

23 DESFire Specific Transponder Operations

Members Length
(Bits)

Description

byte AllowChangeMasterKey 1 If set to 1 the master key is changeable, otherwise it cannot
be changed any more.

byte FreeDirectoryList 1 If set to 1 no preceding authentication with the master key
is required to perform the operations GetFileIDs, GetFileSet-
tings, GetKeySettings (application level) or GetApplication-
IDs, GetKeySettings (transponder level). If set to 0, an au-
thentication with the master key is required.

byte FreeCreateDelete 1 If set to 1 no preceding authentication with the master
key is required to perform the operations CreateFile/Delete-
File (application level) or CreateApplication/DeleteApplica-
tion (transponder level). If set to 0, an authentication with
the master key is required.

byte ConfigurationChangeable 1 If set to 1 the configuration is changeable if authenticated
with the master key. If set to 0, the configuration cannot be
changed any more.

byte ChangeKeyAccessRights 4 This member holds the access rights for changing keys. On
transponder level this member is set to 0.

0x0: Authentication with the master key is necessary to
change any key.

0x1...0xD: Authentication with the specified key is necessary
to change any key. The specified key and the master key can
only be changed after authentication with the master key.

0xE: Authentication with the key to be changed is necessary
to change the key.

0xF: All keys except the master key are frozen.

Table 23.2: Definition of TDESFireKeySettings

Example:

// Query key settings of application 0x123456

TDESFireMasterKeySettings MasterKeySettings;

if (DESFire_SelectApplication(0x123456))
{

if (DESFire_GetKeySettings(CRYPTO_ENV0,&MasterKeySettings))
{

DoSomething(MasterKeySettings);
}

}

23.1.4 Change Key Settings

This function allows to change the transponder- or application master key settings. The respective master
key settings can only be changed, if the bit ConfigurationChangeable of the current key settings was not

Page 112 of 237

23 DESFire Specific Transponder Operations

cleared before. In order to change the key settings, a preceding authentication with the respective master
key is required in general.

bool DESFire_ChangeKeySettings
(
int CryptoEnv,
const TDESFireMasterKeySettings* MasterKeySettings
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

const TDESFireMasterKey
Settings*
MasterKeySettings

This structure holds the new master key settings. See chapter Get Key
Settings for details.

Return: If the operation was successful, the return value is true, otherwise it is
false.

23.1.5 Change Key

This function allows to change a key. The respective key settings define (see chapter Get Key Settings)
whether changing of a key is permitted or not and which key must be used for authentication before calling
this function.

bool DESFire_ChangeKey
(
int CryptoEnv,
int KeyNo,
const byte* OldKey,
int OldKeyByteCount,
const byte* NewKey,
int NewKeyByteCount,
byte KeyVersion,
const TDESFireMasterKeySettings* MasterKeySettings
);

Page 113 of 237

23 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int KeyNo Specify the key number that shall be changed.

const byte* OldKey Specify the old key.

int OldKeyByteCount Specify the length of the old key in bytes.

const byte* NewKey Specify the new key.

int NewKeyByteCount Specify the length of the new key in bytes.

byte KeyVersion Specify the key version of the new key.

const TDESFireMasterKey
Settings*
MasterKeySettings

This structure holds the current master key settings. See chapter Get Key
Settings for details.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Example:

// Change key 1 of application 0x123456

const byte oldKey[16] =
{

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

};
const byte newKey[16] =
{

0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF

};
TDESFireMasterKeySettings MasterKeySettings;

if (!DESFire_SelectApplication(0x123456))
{

return; // Error selecting application
}
if (!DESFire_GetKeySettings(CRYPTO_ENV0, &MasterKeySettings))
{

return; // Error gathering key settings
}
if (MasterKeySettings.KeySettings.ChangeKeyAccessRights == 0)
{

// Authenticate with master key
if (!DESFire_Authenticate(

CRYPTO_ENV0,
0,
oldKey,
DESF_KEYLEN_AES,
DESF_AUTHMODE_EV1))

{
return; // Authentication error

}
if (!DESFire_ChangeKey(

Page 114 of 237

23 DESFire Specific Transponder Operations

CRYPTO_ENV0,
1,
oldKey,
DESF_KEYLEN_AES,
newKey,
DESF_KEYLEN_AES,
0x20,
&MasterKeySettings))

{
return; // Error changing key 1

}
}

23.2 Transponder Related Operations

23.2.1 Create Application

This function allows to create a new application on the transponder. Depending on the security settings of
the transponder, a preceding authentication with the transponder master key may be required, see chapter
Get Key Settings for details.

bool DESFire_CreateApplication
(
int CryptoEnv,
int AID,
const TDESFireMasterKeySettings* MasterKeySettings
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int AID Specify the Application ID of the new application to be created. The AID
consists of 24 bit, its value must be unique on the transponder. The value
0x000000 is reserved for the root application.

const TDESFireMasterKey
Settings*
MasterKeySettings

This structure holds the master key settings of the new application. See
chapter Get Key Settings for details.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Example:

// Create application 0x123456

TDESFireMasterKeySettings MasterKeySettings;

MasterKeySettings.KeySettings.AllowChangeMasterKey = true;
MasterKeySettings.KeySettings.FreeDirectoryList = true;
MasterKeySettings.KeySettings.FreeCreateDelete = true;
MasterKeySettings.KeySettings.ConfigurationChangeable = true;

Page 115 of 237

23 DESFire Specific Transponder Operations

MasterKeySettings.KeySettings.ChangeKeyAccessRights = 0x0;
MasterKeySettings.NumberOfKeys = 2;
MasterKeySettings.KeyType = DESF_KEYTYPE_AES;

if (DESFire_CreateApplication(
CRYPTO_ENV0,
0x123456,
&MasterKeySettings))

{
DoSomething();

}

23.2.2 Delete Application

This function allows to delete an existing application on the transponder. Depending on the security set-
tings of the transponder, a preceding authentication with the transponder master key may be required, see
chapter Get Key Settings for details.

bool DESFire_DeleteApplication
(
int CryptoEnv,
int AID
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int AID Specify the Application ID of the application that shall be deleted. The AID
consists of 24 bit. The value 0x000000 is reserved for the root application
hence this AID cannot be deleted.

Return: If the operation was successful, the return value is true, otherwise it is
false.

23.2.3 Get Application IDs

This function allows to list all application IDs that exist on the transponder. Depending on the security
settings of the transponder, a preceding authentication with the transponder master key may be required,
see chapter Get Key Settings for details.

bool DESFire_GetApplicationIDs
(
int CryptoEnv,
int* AIDs,
int* NumberOfAIDs,
int MaxAIDCnt
);

Page 116 of 237

23 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int* AIDs After successful completion of this function, this parameter holds a list of the
retrieved application IDs.

int* NumberOfAIDs This parameter holds the number of retrieved application IDs.

int MaxAIDCnt Specify the maximum number of application IDs, that can be stored in the ar-
ray AIDs. Note: Up to 28 applications can be stored on a DESFire transpon-
der, so take care for proper dimensioning of the array AIDs.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Example:

// List applications stored on the transponder

int AIDList[28];
int NumberOfAIDs;

if (DESFire_GetApplicationIDs(
CRYPTO_ENV0,
AIDList,
&NumberOfAIDs,
sizeof(AIDList)/sizeof(int)))

{
DoSomething(AIDList,NumberOfAIDs);

}

23.2.4 Select Application

This function is used to select an application in order to perform further operations such as reading or
writing. Depending on the security settings of the selected application, an authentication with one of the
application’s keys may be required after selection.

bool DESFire_SelectApplication
(
int CryptoEnv,
int AID
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int AID This parameter holds the application ID of the application to be selected.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 117 of 237

23 DESFire Specific Transponder Operations

23.2.5 Format Transponder

Calling this function results in formatting the transponder. This means, all applications including their files
and keys are destroyed and the occupied memory space is released for future use. For proper usage, a
preceding authentication with the transponder master key is required.

bool DESFire_FormatTag
(
int CryptoEnv
);

23.2.6 Get Transponder Information

This function can be used to gather detailed information about the DESFire transponder regarding hard-
ware and software version.

bool DESFire_GetVersion
(
int CryptoEnv,
TDESFireVersion* Version
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

TDESFireVersion*
Version

This structure receives the queried manufacturing related information.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Members Length
(Bits)

Description

TDESFireTagInfo HWInfo 80 This member holds the hardware related version information.

TDESFireTagInfo SWInfo 80 This member holds the software related version information.

TDESFireProdInfo ProdInfo 112 This member holds manufacturing specific information.

Table 23.3: Definition of TDESFireVersion

Page 118 of 237

23 DESFire Specific Transponder Operations

Members Length
(Bits)

Description

byte VendorID 8 Codes the vendor ID (0x04 stands for NXP).

byte Type 8 Codes the type (here 0x01).

byte SubType 8 Codes the subtype(here 0x01).

byte VersionMajor 8 Codes the major version number.

byte VersionMinor 8 Codes the minor version number.

uint32_t StorageSize 32 Size of EEPROM in bytes.

byte CommunicationProtocol 8 Codes the communication protocol type (here 0x05 means
ISO14443-3 and -4).

Table 23.4: Definition of TDESFireTagInfo

Members Length
(Bits)

Description

byte UID[7] 56 This member holds the unique serial number. If the
transponder is configured to Random ID, the UID is set to
0x00.

byte ProdBatchNumber[5] 40 Codes the production batch number.

byte
CalendarWeekOfProduction

8 Codes the calendar week of production.

byte YearOfProduction 8 Codes the year of production.

Table 23.5: Definition of TDESFireProdInfo

23.2.7 Get Available Memory Space

This function allows to gather the available memory space of the transponder. A preceding authentication
is not required.

bool DESFire_FreeMem
(
int CryptoEnv,
int* FreeMemory
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int* FreeMemory After successful completion of this function, the available memory size in
bytes is returned by this parameter.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 119 of 237

23 DESFire Specific Transponder Operations

23.2.8 Get Card UID

This function allows to retrieve the card UID in case of random ID. A preceding authentication with any key
is required prior calling this function.

bool DESFire_GetUID
(
int CryptoEnv,
byte* UID,
int* Length,
int BufferSize
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

byte* UID After successful completion of this function, the real card UID is returned by
this parameter. Note: The UID usually occupies 7 bytes, so take care for
proper dimensioning of the array UID.

int* Length The length in bytes of the UID is returned by this parameter.

int BufferSize This parameter specifies the size of the array UID in bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

23.2.9 Set Transponder Configuration

23.2.9.1 Disable Format Tag

When this function is called, formatting the transponder is not possible any more (see chapter Format
Transponder). A preceding authentication with the transponder master key is required prior calling this
function. Note: Disabling tag formatting cannot be reset any more.

bool DESFire_DisableFormatTag
(
int CryptoEnv
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 120 of 237

23 DESFire Specific Transponder Operations

23.2.9.2 Enable Random ID

When this function is called, the transponder is turned into Random ID mode, this means the real UID can
only be retrieved by authenticating to the transponder and calling the function Get Card UID. A preceding
authentication with the transponder master key is required prior calling this function. Note: Setting the
transponder to Random ID mode cannot be reset any more.

bool DESFire_EnableRandomID
(
int CryptoEnv
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

Return: If the operation was successful, the return value is true, otherwise it is
false.

23.2.9.3 Set Default Key

This function can be used to specify the default key, which is applied when e.g. a new application is
created on the transponder. By default, keys are initialized to 0x00. A preceding authentication with the
transponder master key is required prior calling this function.

bool DESFire_SetDefaultKey
(
int CryptoEnv,
const byte* Key,
int KeyByteCount,
byte KeyVersion
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

const byte* Key This parameter specifies the new default key.

int KeyByteCount This parameter specifies the length of the new default key in bytes. Use
one of the predefined constants DESF_KEYLEN_3DES, DESF_KEYLEN_3K3DES or
DESF_KEYLEN_AES.

byte KeyVersion This parameter specifies the default key version.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 121 of 237

23 DESFire Specific Transponder Operations

23.2.9.4 Set User-defined Answer To Select (ATS)

This function can be used to specify a user-defined Answer To Select (ATS) which is returned by the
transponder after RATS. Changing the ATS to a non-default value shall only be carried out by experts as
a ATS longer than 16 bytes could cause problems with readers that support only frame sizes of max. 16
bytes. The ATS must be formatted as follows: TL T0 TA TB TC + Historical bytes. The default ATS of
DESFire EV1 is TL=0x06, T0=0x75, TA=0x77, TB=0x81, TC=0x02, Historical Bytes=0x80.

bool DESFire_SetATS
(
int CryptoEnv,
const byte* ATS,
int Length
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

const byte* ATS This parameter specifies the new ATS.

int Length This parameter specifies the length of the new ATS in bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

23.3 Application Related Operations

This section deals with file handling within an application of a DESFire transponder. An application can
hold three different basic file types: Data files, Value files and Record Files. Data files are available either
with or without integrated backup-mechanism, Value files and Record files always incorporate integrated
backup. There exist two types of record files: Linear record files and Cyclic Record Files.
Some functions for file handling are using the data structure TDESFireFileSettings which defines all
relevant file settings. See the following tables for reference:
Coding of access rights:

Every file holds four different access rights, each access right is coded in one nibble. These four nibbles
are concatenated and form the 16 bit variable AccessRights.

One nibble codes 16 possible values. If it codes a number between 0 and 13, this references a certain key
number within the application.
If the number is 14, this means "free" access so there is no authentication necessary to perform the
respective operation on the file. In case of coding the number 15, this means "deny" access.

23.3.1 Create File

This section deals with the creation of new files within applications. Depending on the specified file type,
the file is either created with or without integrated backup-mechanism. Each file requires an unambiguous
identifier which is coded in one byte in the range from 0x00 to 0x1F. During creation of the file, the level of
security is defined in the communication settings. Communication can be either plain, secured by MAC or

Page 122 of 237

23 DESFire Specific Transponder Operations

Members Length
(Bits)

Description

byte FileType 8 This member defines the file type. Possi-
ble values are: DESF_FILETYPE_STDDATAFILE,
DESF_FILETYPE_BACKUPDATAFILE,
DESF_FILETYPE_VALUEFILE, DESF_FILETYPE_LINEARRECORDFILE,
DESF_FILETYPE_CYCLICRECORDFILE.

byte CommSet 8 This member defines the communication settings be-
tween reader and transponder when the file is ac-
cessed. Possible values are: DESF_COMMSET_PLAIN,
DESF_COMMSET_PLAIN_MACED, DESF_COMMSET_FULLY_ENC

uint16_t AccessRights 16 This member holds the access rights.

union
TDESFireSpecificFileInfo
SpecificFileInfo

32 to
128

This member holds file type specific information.

Table 23.6: Definition of TDESFireFileSettings

15...12 11...8 7...4 3...0

Read Access Write Access Read/Write Access Change Access Rights

Table 23.7: Coding of AccessRights

Members Length
(Bits)

Description

struct
TDESFireDataFileSettings
DataFileSettings

32 Definition of data file settings.

struct
TDESFireValueFileSettings
ValueFileSettings

128 Definition of value file settings.

struct
TDESFireRecordFileSettings
RecordFileSettings

96 Definition of record file settings.

Table 23.8: Definition of union TDESFireSpecificFileInfo

Members Length
(Bits)

Description

uint32_t FileSize 32 Definition of the data file size.

Table 23.9: Definition of struct TDESFireDataFileSettings

fully enciphered. Furthermore, the access rights are assigned to certain keys held by the application.
Depending on the security settings of the application, a preceding authentication with the application mas-
ter key may be required, see chapter Get Key Settings for details.

Page 123 of 237

23 DESFire Specific Transponder Operations

Members Length
(Bits)

Description

uint32_t LowerLimit 32 Definition of the lower limit which must not be passed by a
debit operation.

uint32_t UpperLimit 32 Definition of the upper limit which must not be passed by a
credit operation.

uint32_t LimitedCreditValue 32 Definition of the initial value of the file at file creation.

TValueFileOptions
ValueFileOptions

32 Specific options for value files.

Table 23.10: Definition of struct TDESFireValueFileSettings

Members Length
(Bits)

Description

byte LimitedCreditEnable 1 Limited Credit feature enabled or disabled.

byte FreeGetValue 1 Free read access enabled or disabled.

Table 23.11: Definition of struct TValueFileOptions

Members Length
(Bits)

Description

uint32_t RecordSize 32 Definition of the size of one single record in bytes.

uint32_t MaxNumberOfRecords 32 Definition of the maximum number of records.

uint32_t
CurrentNumberOfRecords

32 Definition of the current number of records. This member is
ignored at file creation.

Table 23.12: Definition of struct TDESFireRecordFileSettings

bool DESFire_CreateDataFile
(
int CryptoEnv,
int FileNo,
const TDESFireFileSettings* FileSettings
);

bool DESFire_CreateValueFile
(
int CryptoEnv,
int FileNo,
const TDESFireFileSettings* FileSettings
);

bool DESFire_CreateRecordFile
(
int CryptoEnv,
int FileNo,
const TDESFireFileSettings* FileSettings
);

Page 124 of 237

23 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int FileNo Specify the file ID. If the ID already exists within the application, this results
in an error.

const
TDESFireFileSettings*
FileSettings

This member holds the file settings. See description of
TDESFireFileSettings for details.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Example:

// Create new standard data file (without backup)
// in application 0x123456

TDESFireFileSettings FileSettings;
int FileID;

if (DESFire_SelectApplication(0x123456))
{

// We create a standard data file
FileSettings.FileType = DESF_FILETYPE_STDDATAFILE;
// Communication between reader and tag is fully enciphered
FileSettings.CommSet = DESF_COMMSET_FULLY_ENC;
// Read Access : Key 1
// Write Access : Key 2
// Read/Write : Key 3
// Change Settings : Key 4
FileSettings.AccessRights = 0x1234;
// File size shall be 512 bytes
FileSettings.SpecificFileInfo.DataFileSettings.FileSize = 512;
// Assign an identifier to the file
FileID = 0x12;
if (DESFire_CreateDataFile(CRYPTO_ENV0, FileID, &FileSettings))
{

DoSomething();
}

}

23.3.2 Delete File

This function allows to permanently deactivate a file within an application. This means, the allocated mem-
ory is not released for further usage, only the file number can be re-used for creating a new file. In order
to re-use the memory of deleted files, this requires formatting the transponder but this leads to permanent
loss of any application data. Depending on the security settings of the application, a preceding authenti-
cation with the application master key may be required, see chapter Get Key Settings for details.

bool DESFire_DeleteFile
(
int CryptoEnv,
int FileNo

Page 125 of 237

23 DESFire Specific Transponder Operations

);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int FileNo Specify the ID of the file which shall be deleted. If the ID doesn’t exist within
the application, this results in an error.

Return: If the operation was successful, the return value is true, otherwise it is
false.

23.3.3 Get File IDs

This function allows to list all file IDs that exist within the currently selected application. Each file ID is
coded in one byte in the range from 0x00 to 0x1F. Duplicate values are not possible as each file must have
an unambiguous identifier. Depending on the security settings of the application, a preceding authentica-
tion with the application master key may be required, see chapter Get Key Settings for details.

bool DESFire_GetFileIDs
(
int CryptoEnv,
byte* FileIDList,
int* FileIDCount,
int MaxFileIDCount
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

byte* FileIDList After successful completion of this function, this parameter holds a list of the
retrieved file IDs.

int* FileIDCount This parameter holds the number of retrieved file IDs.

int MaxFileIDCount Specify the maximum number of file IDs, that can be stored in the array
FileIDList. Note: Up to 32 files can be stored within an application, so take
care for proper dimensioning of the array FileIDList.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Example:
See chapter Get File Settings for a comprehensive example.

23.3.4 Get File Settings

This function allows to query the file settings of an existing file within an application. The returned infor-
mation depends on the type of the file. Depending on the security settings of the application, a preceding
authentication with the application master key may be required, see chapter Get Key Settings for details.

Page 126 of 237

23 DESFire Specific Transponder Operations

bool DESFire_GetFileSettings
(
int CryptoEnv,
int FileNo,
TDESFireFileSettings* FileSettings
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int FileNo Specify the file ID which shall be queried.

TDESFireFileSettings*
FileSettings

This member holds the returned file settings. See description of
TDESFireFileSettings for details.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Example:

// Query file settings of all files in application 0x123456

TDESFireFileSettings FileSettings;

// An application can hold up to 32 files
byte FileIDList[32];
int FileIDCount;

int i;

if (DESFire_SelectApplication(0x123456))
{

// Gather a list of present file IDs
if (DESFire_GetFileIDs(

CRYPTO_ENV0,
FileIDList,
&FileIDCount,
sizeof(FileIDList)))

{
for (i=0; i<FileIDCount; i++)
{

// Query the settings of each file
if (DESFire_GetFileSettings(

CRYPTO_ENV0,
FileIDList[i],
&FileSettings))

{
switch(FileSettings.FileType)
{
case DESF_FILETYPE_STDDATAFILE:

DoSomething();
break;

case DESF_FILETYPE_VALUEFILE:
DoSomethingElse();
break;

}
}

Page 127 of 237

23 DESFire Specific Transponder Operations

}
}

}

23.3.5 Change File Settings

This function allows to change the access parameters such as communication settings and access rights
of an existing file. Depending on the actual change access rights of the file, authentication with the respec-
tive key has to be performed before calling this function. Furthermore, the change access right must be
different from "deny". See Coding of Access Rights for details.

bool DESFire_ChangeFileSettings
(
int CryptoEnv,
int FileNo,
int NewCommSet,
int OldAccessRights,
int NewAccessRights
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int FileNo Specify the file ID whose settings shall be changed.

int NewCommSet Specify the new communication settings. Possible val-
ues are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

int OldAccessRights Specify the current Access Rights of the file.

int NewAccessRights Specify the new Access Rights of the file.

Return: If the operation was successful, the return value is true, otherwise it is
false.

23.4 File Related Operations

23.4.1 Data Files

23.4.1.1 Read Data

This function shall be used to access a standard or backup data file in order to read from it. Depending
on the file’s access rights, a preceding authentication with the read or read/write key has to be done, see
Coding of Access Rights for details. The function allows segmented access, this means the user is able to
either read the entire file or only a part starting at a user-defined offset.

bool DESFire_ReadData
(
int CryptoEnv,

Page 128 of 237

23 DESFire Specific Transponder Operations

int FileNo,
byte* Data,
int Offset,
int Length,
int CommSet
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int FileNo Specify the ID of the file that shall be read.

byte* Data After successful completion of this function, the buffer referred by this pa-
rameter holds the data which was read from the transponder. Take care for
adequate dimensioning.

int Offset Specify the starting address for reading. The valid range of this parameter
is 0x000000 to FileSize - 1. In case of address-range violation, the function
returns with an error.

int Length Specify the length of data that shall be read. The valid range of this pa-
rameter is FileSize - Offset. In case of address-range violation, the function
returns with an error.

int CommSet Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possi-
ble values are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Example:

// Read data file 0x12 which is located in application 0x123456

TDESFireFileSettings FileSettings;

int ReadAccess;

// This is the buffer that receives the data to be read
byte Data[512];

// If an authentication is necessary, we assume this would be
// the key that gives read access
const byte KeyRead[16] =
{

0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF

};

if (!DESFire_SelectApplication(CRYPTO_ENV0, 0x123456))
return; // Error

// Gather file settings
if (!DESFire_GetFileSettings(CRYPTO_ENV0, 0x12, &FileSettings))

return; // Error

Page 129 of 237

23 DESFire Specific Transponder Operations

// Read access rights are located in the highest nibble of
// FileSettings.AccessRights
ReadAccess = (FileSettings.AccessRights >> 12) & 0x000F;

switch (ReadAccess)
{
case 15: // Access denied

return;
case 14: // Free access

break;
default:

// Authenticate with the "reading-key"
if (!DESFire_Authenticate(

CRYPTO_ENV0,
ReadAccess,
KeyRead,
DESF_KEYLEN_AES,
DESF_KEYTYPE_AES,
DESF_AUTHMODE_EV1))
return; // Error

}

// Check size of reading buffer
if (FileSettings.SpecificFileInfo.DataFileSettings.FileSize >

sizeof(Data))
return; // Buffer size not enough

// Read entire data file
if (DESFire_ReadData(

CRYPTO_ENV0,
0x12,
Data,
0,
FileSettings.SpecificFileInfo.DataFileSettings.FileSize,
FileSettings.CommSet))

{
DoSomething();

}

23.4.1.2 Write Data

This function shall be used to access a standard or backup data file in order to write to it. Depending on the
file’s access rights, a preceding authentication with the write or read/write key has to be done, see Coding
of Access Rights for details. The function allows segmented access, this means the user is able to either
rewrite the entire file or only a part starting at a user-defined offset.

bool DESFire_WriteData
(
int CryptoEnv,
int FileNo,
const byte* Data,
int Offset,
int Length,
int CommSet

Page 130 of 237

23 DESFire Specific Transponder Operations

);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int FileNo Specify the ID of the file that shall be written.

const byte* Data The buffer referred by this parameter holds the data which is written to the
file.

int Offset Specify the starting address for writing. The valid range of this parameter
is 0x000000 to FileSize - 1. In case of address-range violation, the function
returns with an error.

int Length Specify the length of data that shall be written. The valid range of this pa-
rameter is FileSize - Offset. In case of address-range violation, the function
returns with an error.

int CommSet Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possi-
ble values are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Remark: If data is written to a Backup Data File, it is necessary to validate the written data with
the function Commit Transaction. Calling the function Abort Transaction will invalidate all
changes.

Example:

// Write to data file 0x12 which is located in application 0x123456

TDESFireFileSettings FileSettings;

int WriteAccess;

// This is the buffer that holds the data to be written
const byte Data[] =
{

0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08
};

// If an authentication is necessary, we assume this would be
// the key that gives write access
const byte KeyWrite[16] =
{

0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF

};

if (!DESFire_SelectApplication(CRYPTO_ENV0, 0x123456))
return; // Error

// Gather file settings
if (!DESFire_GetFileSettings(CRYPTO_ENV0, 0x12, &FileSettings))

return; // Error

Page 131 of 237

23 DESFire Specific Transponder Operations

// Write access rights are located in bits 11...8 of
// FileSettings.AccessRights
WriteAccess = (FileSettings.AccessRights >> 8) & 0x000F;

switch (WriteAccess)
{
case 15: // Access denied

return;
case 14: // Free access

break;
default:

// Authenticate with the "writing-key"
if (!DESFire_Authenticate(

CRYPTO_ENV0,
WriteAccess,
KeyWrite,
DESF_KEYLEN_AES,
DESF_KEYTYPE_AES,
DESF_AUTHMODE_EV1))
return; // Error

}

// Check size of file
if (FileSettings.SpecificFileInfo.DataFileSettings.FileSize <

sizeof(Data))
return; // File size not enough

// Write to data file
if (DESFire_WriteData(

CRYPTO_ENV0,
0x12,
Data,
0,
sizeof(Data),
FileSettings.CommSet))

{
DoSomething();

}

23.4.2 Value Files

23.4.2.1 Get Value

This function allows to read the current value from a Value File. Depending on the file’s access rights,
a preceding authentication with the read, write or read/write key has to be done, see Coding of Access
Rights for details.

bool DESFire_GetValue
(
int CryptoEnv,
int FileNo,
int* Value,
int CommSet
);

Page 132 of 237

23 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int FileNo Specify the ID of the Value File whose value shall be queried.

int* Value After successful completion of this function, this parameter holds the value
which was read from the file.

int CommSet Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possi-
ble values are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

Return: If the operation was successful, the return value is true, otherwise it is
false.

23.4.2.2 Debit

This function allows to decrease a value stored in a Value File. The function requires a preceding au-
thentication with the read, write or read/write key, see Coding of Access Rights for details. The value
modifications of Credit , Debit and Limited Credit functions are cumulated until the function Commit Trans-
action is called.
If the Limited Credit feature is enabled, the new limit for a subsequent Limited Credit function call is set
to the sum of Debit modifications within one transaction before calling Commit Transaction. This assures,
that a Limited Credit can not re-book more values than a debiting transaction deducted before.

bool DESFire_Debit
(
int CryptoEnv,
int FileNo,
const int Value,
int CommSet
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int FileNo Specify the ID of the Value File that shall be debited.

const int Value The value stored in the value file will be decreased by this parameter.

int CommSet Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possi-
ble values are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Remark: After modifying value files, it is necessary to validate the transaction with the function Commit
Transaction. Calling the function Abort Transaction will invalidate all changes.

Page 133 of 237

23 DESFire Specific Transponder Operations

23.4.2.3 Credit

This function allows to increase a value stored in a Value File. The function requires a preceding authenti-
cation with the read/write key, see Coding of Access Rights for details. The value modifications of Credit ,
Debit and Limited Credit functions are cumulated until the function Commit Transaction is called.
If the Limited Credit feature is enabled, this function cannot be used. Use the function Limited Credit in-
stead.

bool DESFire_Credit
(
int CryptoEnv,
int FileNo,
const int Value,
int CommSet
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int FileNo Specify the ID of the Value File that shall be credited.

const int Value The value stored in the value file will be increased by this parameter.

int CommSet Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possi-
ble values are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Remark: After modifying value files, it is necessary to validate the transaction with the function Commit
Transaction. Calling the function Abort Transaction will invalidate all changes.

23.4.2.4 Limited Credit

This function allows a limited increase of a value stored in a Value File without having full read/write per-
missions to the file. This feature can only be used if it has been enabled during file creation. The function
requires a preceding authentication with the write or read/write key, see Coding of Access Rights for de-
tails. The value modifications of Credit , Debit and Limited Credit functions are cumulated until the function
Commit Transaction is called.
After calling this function, the new limit is set to 0, regardless of the amount which has been re-booked.
Hence, this function can only be used once after a Debit transaction.

bool DESFire_LimitedCredit
(
int CryptoEnv,
int FileNo,
const int Value,
int CommSet
);

Page 134 of 237

23 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int FileNo Specify the ID of the Value File that shall be credited.

const int Value The value stored in the value file will be increased by this parameter. It is
limited to the sum of Debit operations on this value file within the most recent
transaction containing at least one Debit.

int CommSet Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possi-
ble values are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Remark: After modifying value files, it is necessary to validate the transaction with the function Commit
Transaction. Calling the function Abort Transaction will invalidate all changes.

23.4.3 Record Files

23.4.3.1 Read Records

Use this function to read out a set of complete records from a Record File. The function requires a preced-
ing authentication with the read or read/write key, see Coding of Access Rights for details.

bool DESFire_ReadRecords
(
int CryptoEnv,
int FileNo,
byte* RecordData,
int* RecDataByteCnt,
int Offset,
int NumberOfRecords,
int RecordSize,
int CommSet
);

Page 135 of 237

23 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int FileNo Specify the ID of the file that shall be read.

byte* RecordData After successful completion of this function, the buffer referred by this pa-
rameter holds the data which was read from the transponder. Take care for
adequate dimensioning.

int* RecDataByteCnt The total number of bytes read from the transponder is represented by this
parameter.

int Offset Specify the offset of the newest record to be read out. The valid range of
this parameter is 0x000000 to number of existing records - 1. In case of
0x000000 the latest record is read out.

int NumberOfRecords Specify the number of records to be read out.

int CommSet Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possi-
ble values are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

Return: If the operation was successful, the return value is true, otherwise it is
false.

23.4.3.2 Write Record

Use this function to write data to a Record File. The function requires a preceding authentication with
the write or read/write key, see Coding of Access Rights for details. In order to validate writing, a call of
Commit Transaction becomes necessary. If writing is not validated, a new WriteRecord command writes
to the already created record.

bool DESFire_WriteRecord
(
int CryptoEnv,
int FileNo,
const byte* Data,
int Offset,
int Length,
int CommSet
);

Page 136 of 237

23 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int FileNo Specify the ID of the file that shall be read.

const byte* Data This buffer holds the record data to be written.

int Offset Specify the offset in bytes within one single record. The valid range of this
parameter is 0x000000 to record size - 1.

int Length Specify the length of data to be written. The parameter has to be in the
range from 0x000001 to record size - offset.

int CommSet Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possi-
ble values are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

Return: If the operation was successful, the return value is true, otherwise it is
false.

23.4.3.3 Clear Record File

Use this function to reset a Record File to the empty state. The function requires a preceding authentica-
tion with the read/write key, see Coding of Access Rights for details. After execution of the function, a call
of Commit Transaction becomes necessary.

bool DESFire_ClearRecordFile(int CryptoEnv, int FileNo);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

int FileNo Specify the ID of the file that shall be cleared.

Return: If the operation was successful, the return value is true, otherwise it is
false.

23.4.4 Commit Transaction

This function allows to validate all previous modifications on files with integrated backup mechanism such
as Backup Data Files, Value Files and Record Files. When a transaction has been finished, this is usually
the last called function; if this step was omitted, any changes would be lost if a different application is
selected or the transponder is removed from the RF-field.

bool DESFire_CommitTransaction
(
int CryptoEnv
);

Page 137 of 237

23 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

Return: If the operation was successful, the return value is true, otherwise it is
false.

23.4.5 Abort Transaction

This function allows to discard all previous modifications on files with integrated backup mechanism such
as Backup Data Files, Value Files and Record Files.

bool DESFire_AbortTransaction
(
int CryptoEnv
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants. Usu-
ally the same environment is specified that was used for authentication.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 138 of 237

24 SAM AV1/AV2

24 SAM AV1/AV2

Before using one of the following functions, a NXP SAM AV1/AV2 card must have been inserted into one of
the available SAM slots. When powering up, TWN4 scans the slots for SAM cards, so a correctly inserted
SAM card is detected automatically for later use.

24.1 Host Authentication

This function shall be used to perform a mutual three pass authentication between host (reader) and the
SAM AV1/AV2 card. The function supports both 3DES and AES cryptography. Depending on security set-
tings of the SAM card, the authentication might be necessary in order to perform different security related
actions afterwards.

bool SAMAVx_AuthenticateHost
(
int CryptoEnv,
int KeyNo,
const byte* Key,
int KeyByteCount,
int KeyType
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants.

int KeyNo Specify the key number that shall be used for authentication.

const byte* Key Specify the key that shall be used for authentication. For 3DES/AES, the
key must have a key length of 16 bytes.

int KeyByteCount Specify the key length of the key. Use one of the predefined constants
DESF_KEYLEN_3DES or DESF_KEYLEN_AES.

int KeyType Specify the type of the specified key. Use one of the predefined constants
DESF_KEYTYPE_3DES or DESF_KEYTYPE_AES. The authentication will be per-
formed according to the specified key type.

Return: If the operation was successful, the return value is true, otherwise it is
false.

24.2 Query Key Entry

Use this function to query information about a key entry on the SAM card.

Page 139 of 237

24 SAM AV1/AV2

bool SAMAVx_GetKeyEntry(int KeyNo, TSAMAVxKeyEntryData* KeyEntryData);

Parameters:

int KeyNo Specify the key number that shall be used for authentication.

TSAMAVxKeyEntryData*
KeyEntryData

The key entry is returned by this parameter.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Members Length
(Bits)

Description

byte VersionKeyA 8 This member holds the version of Key A.

byte VersionKeyB 8 This member holds the version of Key B.

byte VersionKeyC 8 This member holds the version of Key C.

uint32_t DF_AID 32 This member holds the associated DESFire AID.

byte DF_KeyNo 8 This member holds the associated DESFire key number.

byte KeyNoCEK 8 This member holds the key number of the change entry key.

byte KeyNoVCEK 8 This member holds the key version of the change entry key.

byte RefNoKUC 8 This member holds the number of the associated Key Usage
Counter.

uint16_t SET 16 This member holds the configuration settings of the key en-
try.

Table 24.1: Definition of TSAMAVxKeyEntryData

Page 140 of 237

25 ISO15693 Specific Transponder Operations

25 ISO15693 Specific Transponder Operations

25.1 Generic ISO15693 Command

This function can be used for ISO15693 specific transponder operations which are not covered by high-
level system functions.

bool ISO15693_GenericCommand
(
byte Flags,
byte Command,
byte* Data,
int* Length,
int BufferSize
);

Parameters:

byte Flags Specify the ISO15693 flags. Note: TWN4 Core Mifare based readers only
support dual subcarrier mode at low datarate. All other readers support
single subcarrier mode at high datarate.

byte Command Command code.

byte* Data This parameter works as Input/Output-buffer. All additional parameters
which are sent to the transponder are passed within this buffer. This buffer
is also used for data returned from the transponder. The reader internal
send/receive buffer is 256 bytes.

int* Length This parameter works as Input/Output-variable. It holds the payload-length
of Data in the directions Reader→Tag and Tag→Reader.

int BufferSize This parameter holds the array-size of Data in bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

25.1.1 Example of creating a Standard ISO15693 Command

// Read Single Block Command
byte Flags = 0x11; // Dual Subcarrier, low datarate, Select Flag is set
byte Command = 0x20; // Command Code of READ_SINGLE_BLOCK
byte Data[16] = { 0x00 }; // Shared buffer for command arguments and tag response, we want to read block 0x00 here
int Length = 1; // Payload length for input and output
if (ISO15693_GenericCommand(Flags, Command, Data, &Length, sizeof(Data)))
{

DoSomething();
}

Page 141 of 237

25 ISO15693 Specific Transponder Operations

Members Length
(Bits)

Description

byte DSFID_Present 1 Set to 1 if DSFID is present

byte AFI_Present 1 Set to 1 if AFI is present

byte
VICC_Memory_Size_Present

1 Set to 1 if BlockSize and Number_of_Blocks are present

byte IC_Reference_Present 1 Set to 1 if IC_Reference is present

byte Res1 4 Reserved for future use

byte UID[8] 64 Unique Identifier

byte DSFID 8 Data Storage Format Identifier

byte AFI 8 Application Family Identifier

byte BlockSize 8 Size of one data block in bytes

uint16_t Number_of_Blocks 16 Number of available blocks

byte IC_Reference 8 Meaning defined by the IC manufacturer

Table 25.1: Definition of TISO15693_SystemInfo

25.2 Gather Tag Specific Information

25.2.1 Get System Information

This function returns more in-depth information of the tag. The function is available in two versions (Proto-
col Extension flag set or reset), as some tag types like ST 24LR16/64 require the Protocol Extension flag
to be set for proper operation.

bool ISO15693_GetSystemInformation
(
TISO15693_SystemInfo* SystemInfo
);

bool ISO15693_GetSystemInformationExt
(
TISO15693_SystemInfo* SystemInfo
);

Parameters:

TISO15693_SystemInfo*
SystemInfo

Pointer to the structure which receives the System Information.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Remark: As the GetSystemInformation command is no mandatory ISO15693 command, it is not im-
plemented in all tag types available on the market.

Page 142 of 237

25 ISO15693 Specific Transponder Operations

Definition Value Manufacturer Tag Type

ISO15693_TAGTYPE_ICODESL2 0x00 NXP ICode SL2

ISO15693_TAGTYPE_ICODESL2S 0x01 ICode SL2S

ISO15693_TAGTYPE_UNKNOWNNXP 0x0F Unknown

ISO15693_TAGTYPE_TAGITHFIPLUSINLAY 0x10 TI Tag-It HFI Plus Inlay

ISO15693_TAGTYPE_TAGITHFIPLUSCHIP 0x11 Tag-It HFI Plus Chip

ISO15693_TAGTYPE_TAGITHFISTD 0x12 Tag-It HFI Standard

ISO15693_TAGTYPE_TAGITHFIPRO 0x13 Tag-It HFI Pro

ISO15693_TAGTYPE_UNKNOWNTI 0x1F Unknown

ISO15693_TAGTYPE_UNKNOWNST 0x4F ST Unknown

ISO15693_TAGTYPE_SRF55V02P 0x50 Infineon SRF55V02P

ISO15693_TAGTYPE_SRF55V10P 0x51 SRF55V10P

ISO15693_TAGTYPE_SRF55V02S 0x52 SRF55V02S

ISO15693_TAGTYPE_SRF55V10S 0x53 SRF55V10S

ISO15693_TAGTYPE_UNKNOWNINFINEON 0x5F Unknown

ISO15693_TAGTYPE_UNKNOWN 0xFF Unknown Unknown ISO15693

Table 25.2: Retrievable tag types from UID

25.2.2 Get Tag Type

The ISO15693 API incorporates two methods to determine the tag type, either by analysing the UID or the
System Information structure.

25.2.2.1 Get Tag Type From UID

This function can be used to determine the tag type of ISO15693 compliant transponders if only the UID
is available.

int ISO15693_GetTagTypeFromUID
(
byte* UID
);

Parameters:

byte* UID This parameter holds the UID. Watch for the correct byte order; UID[0] shall
have the value 0xE0

Return: The return-value is the determined tag-type which is represented by one of
the constants in the table below.

Page 143 of 237

25 ISO15693 Specific Transponder Operations

25.2.2.2 Get Tag Type From System Information

This function can be used to determine the tag type of ISO15693 compliant transponders if the System
Information is available.

int ISO15693_GetTagTypeFromSystemInfo
(
TISO15693_SystemInfo* SystemInfo
);

Parameters:

TISO15693_SystemInfo*
SystemInfo

Pointer to the structure which holds the System Information.

Return: The return-value is the determined tag-type which is represented by one of
the constants in the table below.

Page 144 of 237

25 ISO15693 Specific Transponder Operations

Definition Value Manufacturer Tag Type

ISO15693_TAGTYPE_ICODESL2 0x00 NXP ICode SL2

ISO15693_TAGTYPE_ICODESL2S 0x01 ICode SL2S

ISO15693_TAGTYPE_UNKNOWNNXP 0x0F Unknown

ISO15693_TAGTYPE_TAGITHFIPLUSINLAY 0x10 TI Tag-It HFI Plus Inlay

ISO15693_TAGTYPE_TAGITHFIPLUSCHIP 0x11 Tag-It HFI Plus Chip

ISO15693_TAGTYPE_TAGITHFISTD 0x12 Tag-It HFI Standard

ISO15693_TAGTYPE_TAGITHFIPRO 0x13 Tag-It HFI Pro

ISO15693_TAGTYPE_UNKNOWNTI 0x1F Unknown

ISO15693_TAGTYPE_MB89R118 0x20 Fuji MB89R118

ISO15693_TAGTYPE_MB89R119 0x21 MB89R119

ISO15693_TAGTYPE_MB89R112 0x22 MB89R112

ISO15693_TAGTYPE_UNKNOWNFUJI 0x2F Unknown

ISO15693_TAGTYPE_24LR16 0x30 ST 24LR16

ISO15693_TAGTYPE_24LR64 0x31 24LR64

ISO15693_TAGTYPE_LRI1K 0x40 LRI1K

ISO15693_TAGTYPE_LRI2K 0x41 LRI2K

ISO15693_TAGTYPE_LRIS2K 0x42 LRIS2K

ISO15693_TAGTYPE_LRIS64K 0x43 LRIS64K

ISO15693_TAGTYPE_UNKNOWNST 0x4F Unknown

ISO15693_TAGTYPE_SRF55V02P 0x50 Infineon SRF55V02P

ISO15693_TAGTYPE_SRF55V10P 0x51 SRF55V10P

ISO15693_TAGTYPE_SRF55V02S 0x52 SRF55V02S

ISO15693_TAGTYPE_SRF55V10S 0x53 SRF55V10S

ISO15693_TAGTYPE_UNKNOWNINFINEON 0x5F Unknown

ISO15693_TAGTYPE_UNKNOWN 0xFF Unknown Unknown ISO15693

Table 25.3: Retrievable tag types from System Information

Page 145 of 237

25 ISO15693 Specific Transponder Operations

25.3 Read/Write Data

25.3.1 Read Single Block

Read a single data block from the transponder. The function is available in two versions (Protocol Exten-
sion flag set or reset), as some tag types like ST 24LR16/64 require the Protocol Extension flag to be set
for proper operation.

bool ISO15693_ReadSingleBlock
(
int BlockNumber,
byte* BlockData,
int* Length,
int BufferSize
);

bool ISO15693_ReadSingleBlockExt
(
int BlockNumber,
byte* BlockData,
int* Length,
int BufferSize
);

Parameters:

int BlockNumber This parameter holds the number of the block to be read.

byte* BlockData This parameter holds the data which was read from the tag if the operation
was successful. Note that the block size varies between different tag types,
so the array size of BlockData should be set to a reasonable value.

int* Length This parameter holds the length of data which was read from the tag in bytes.

int BufferSize This parameter holds the array-size of BlockData in bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

25.3.2 Write Single Block

Write to a single data block of the transponder. The function is available in two versions (Protocol Exten-
sion flag set or reset), as some tag types like ST 24LR16/64 require the Protocol Extension flag to be set
for proper operation.

bool ISO15693_WriteSingleBlock
(
int BlockNumber,
const byte* BlockData,
int Length
);

bool ISO15693_WriteSingleBlockExt
(
int BlockNumber,
const byte* BlockData,

Page 146 of 237

25 ISO15693 Specific Transponder Operations

int Length
);

Parameters:

int BlockNumber This parameter holds the number of the block to be written.

const byte* BlockData This parameter holds the data which shall be written to the tag.

int Length This parameter holds the length of data which shall be written to the tag in
bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 147 of 237

26 LEGIC-Specific Functions

26 LEGIC-Specific Functions

This chapter describes functions for accessing LEGIC functionality.

Notes:

• These functions are available at TWN4 MultiTech LEGIC only.

• The style of functions has been changed due to additional support of SM4500: All functions are
starting with SM4X00 instead of SM4200. Old-style functions are supported via macros.

26.1 Direct Access of LEGIC Chip

TWN4 MultiTech LEGIC has a built-in LEGIC chip type SM4200 or SM4500. There are functions available
to directly communicate with this chipset.

Note:

Due to license restrictions, this documentation only mentions the functions itself. In order to use full
functionality of the LEGIC chip, appropriate documentation is required, which is available under NDA
(none-disclosure agreement) only.

26.1.1 SM4X00_GenericRaw

Send a command and receive the response from SM4X00. Command and response are expected to
include CRC. This function is intended to be used for end-to-end communication between SM4X00 and a
host.

bool SM4X00_GenericRaw(const byte *TXData,int TXDataLength,
byte *RXData,int *RXDataLength,
int MaxRXDataLength,int Timeout);

Parameters:

const byte *TXData Pointer to an array of bytes, which contains the command to be sent to
SM4X00.

int TXDataLength Number of bytes to be sent to SM4X00.

byte *RXData Pointer to an array of bytes, which receives response from SM4X00

int *RXDataLength Pointer to an integer, which receives the actually read number of bytes.

int MaxRXDataLength A value, which specifies the maximum number of bytes, which can be re-
ceived byte RXData, thus the buffer size.

int Timeout Maximum time, the function should wait for a response from SM4X00. This
value is specified in milliseconds.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 148 of 237

26 LEGIC-Specific Functions

26.1.2 SM4X00_Generic

Send a command and receive the response from SM4X00. This function is intended to be used by
standand-along applications.

bool SM4X00_Generic(const byte *TXData,int TXDataLength,
byte *RXData,int *RXDataLength,
int MaxRXDataLength,int Timeout);

Parameters:

const byte *TXData Pointer to an array of bytes, which contains the command to be sent to
SM4X00. The command has to be specified W/O leading length byte and
W/O closing CRC value.

int TXDataLength Number of bytes contained in TXData.

byte *RXData Pointer to an array of bytes, which receives response from SM4X00. Re-
ceived data is W/O length byte and W/O CRC value.

int *RXDataLength Pointer to an integer, which receives length of the actually received payload.

int MaxRXDataLength A value, which specifies the maximum number of bytes, which can be re-
ceived byte RXData, thus the buffer size.

int Timeout Maximum time, the function should wait for a response from SM4X00. This
value is specified in milliseconds.

Return: If the operation was successful, the return value is true, otherwise it is
false.

26.1.3 SM4X00_StartBootloader

Start boot loader of SM4X00.

bool SM4X00_StartBootloader(byte *TLV,int *TLVLength,int MaxTLVLength)

Parameters:

byte *TLV

int *TLVLength

int MaxTLVLength

Return: If the operation was successful, the return value is true, otherwise it is
false.

26.1.4 SM4X00_EraseFlash

Erase flash of SM4X00.

bool SM4X00_EraseFlash(void)

Parameters: None.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 149 of 237

26 LEGIC-Specific Functions

26.1.5 SM4X00_ProgramBlock

Program one block of data into the flash of SM4X00.

bool SM4X00_ProgramBlock(byte *Data,bool *Done)

Parameters:

byte *Data Pointer to an array of bytes.

bool *Done Pointer to a boolean variable, which receives the status, if the last block was
flashed.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 150 of 237

27 iCLASS Specific Transponder Operations

27 iCLASS Specific Transponder Operations

This chapter handles specific operations with iCLASS transponders. Prerequisites for this functionality are:

• The reader must be the TWN4 MultiTech/MultiTech Nano version, LEGIC is not supported.

• An iCLASS SIO card must be inserted into one of the SAM slots.

• The I-Option must be activated.

• For iCLASS Seos support, the SIO card must have firmware 1.19 or higher.

27.1 Read PAC Bits

This function can be used to read the PAC (Physical Access Control) bits from an iCLASS transponder.
The transponder must have been selected before this function can be called.

bool ICLASS_GetPACBits
(
byte* PACBits,
int* PACBitCnt,
int MaxPACBytes
);

Parameters:

byte* PACBits After successful completion of this function, the buffer referred by this pa-
rameter holds the PAC bits read from the transponder. Take care for ade-
quate dimensioning.

int* PACBitCnt After successful completion of this function, this parameter holds the number
of bits, the PAC contains.

int MaxPACBytes This parameter holds the maximum number of bytes which the buffer
PACBits can hold.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Remark: There are transponders available, that have not been configured to deliver the PAC bits. In
this case, if an attempt is made to read these bits, the function returns false.

27.1.1 Example

The following example shows how to manually read the PAC from an iCLASS transponder using the built-in
system functions.

Page 151 of 237

27 iCLASS Specific Transponder Operations

byte ID[8];
int TagType;
int IDBitCnt;

byte PACBits[8];
int PACBitCnt;

// Search only for iCLASS transponders
SetTagTypes(0, TAGMASK(HFTAG_HIDICLASS));

while (true)
{

// Search for transponders
if (!SearchTag(&TagType,&IDBitCnt,ID,sizeof(ID)))

continue;

// Read the PAC bits
if (!ICLASS_GetPACBits(PACBits, &PACBitCnt, sizeof(PACBits)))

continue;

// Output what was read from the card
HostWriteHex(PACBits, PACBitCnt, (PACBitCnt+7)/8*2);
HostWriteChar(’\r’);

}

27.2 Select Page

Use this function to select a transponder book and page. In case of success, the Configuration Block is
returned. Note that this function is not supported by some iCLASS transponders, e.g. iCLASS 2k/2.

bool ICLASS_SelectPage
(
int Book,
int Page,
TICLASS_ConfigBlock* ConfigBlock
);

Parameters:

int Book Specify the book number to be selected.

int Page Specify the page number to be selected.

TICLASS_ConfigBlock*
ConfigBlock

The content of the Configuration Block of the selected page is returned by
this buffer.

Return: If the operation was successful, the return value is true, otherwise it is
false.

27.3 Authenticate

Use this function to perform the mutual authentication procedure. Authentication may be required to have
read-/write access to protected data blocks. Either a Debit or a Credit key can be used for Application Area

Page 152 of 237

27 iCLASS Specific Transponder Operations

1 or 2 respectively. Before this function can be used, book and page have to be selected in advance.

bool ICLASS_Authenticate
(
const byte* KeyReferenceOID,
int KeyType
);

Parameters:

const byte*
KeyReferenceOID

Specify the OID of the key to be used for authentication. The OID is always
3 bytes in length, the first byte must be 0x03.

int KeyType Specify the type of key, use one of the predefined constants
ICLASS_KEYTYPE_CREDIT or ICLASS_KEYTYPE_DEBIT.

Return: If the operation was successful, the return value is true, otherwise it is
false.

27.4 Read Data Block

Use this function to read a single 8 byte block of an iCLASS transponder. If a read operation to a protected
block is carried out, the function returns all 0xFF as data. So it is necessary to select a page and perform
authentication prior read access.

bool ICLASS_ReadBlock
(
int Block,
byte* BlockData
);

Parameters:

int Block Specify the block number to be read.

byte* BlockData This buffer holds the block data read from the tranponder. The block size is
always 8 bytes so take care for proper dimensioning of the buffer size.

Return: If the operation was successful, the return value is true, otherwise it is
false.

27.5 Write Data Block

Use this function to write a 8 byte data block to an iCLASS transponder. Before a write operation can be
carried out, a page must be selected and authenticated.

bool ICLASS_WriteBlock
(
int Block,
const byte* BlockData
);

Page 153 of 237

27 iCLASS Specific Transponder Operations

Parameters:

int Block Specify the block number to be written.

const byte* BlockData This buffer holds the block data to be written to the tranponder. The block
size is always 8 bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 154 of 237

28 FeliCa

28 FeliCa

This chapter handles specific operations of contactless transponders that support FeliCa technology. Be-
fore one of the following functions can be used, the transponder must have been selected using the function
SearchTag(...).

28.1 Polling

Use this function to acquire a card by specifying a System Code. The transponder only answers if the
specified System Code matches to a system stored on the card. By specifying a wildcard (0xFF) for either
the upper or lower byte, a particular match of System Code can be achieved.

bool FeliCa_Poll(uint16_t SystemCode, byte* IDm, byte* PMm);

Parameters:

uint16_t SystemCode Specify the two-byte System Code by this parameter.

byte* IDm The Manufacture ID is returned by this buffer. The function always returns 8
bytes.

byte* PMm The Manufacture Parameter is returned by this buffer. The function always
returns 8 bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

28.2 Request System Code

Use this function to aquire a list of System Codes which are available on the card. This function does not
work with FeliCa Lite or FeliCa Plug ICs.

bool FeliCa_RequestSystemCode
(
int* NumberOfSystemCodes,
uint16_t* SystemCodeList,
int MaxNumberOfSystemCodes
);

Page 155 of 237

28 FeliCa

Parameters:

int*
NumberOfSystemCodes

This parameter holds the number of retrieved System Codes.

uint16_t*
SystemCodeList

This parameter holds the list of System Codes which are available on the
card.

int
MaxNumberOfSystemCodes

Specify the maximum number of System Codes, that can be stored in the
array SystemCodeList.

Return: If the operation was successful, the return value is true, otherwise it is
false.

28.3 Request Service

Use this function to verify the existance of Area and Service Codes. The function returns the Key Version
of existing Area and System Codes. If the specified Area or System does not exist, the respective Key
Version is 0xFFFF. This function does not work with FeliCa Lite or FeliCa Plug ICs.

bool FeliCa_RequestService
(
int NumberOfServices,
const uint16_t* ServiceCodeList,
uint16_t* KeyVersionList
);

Parameters:

int NumberOfServices This parameter specifies the size of ServiceCodeList.

const uint16_t*
ServiceCodeList

This array holds the list of Service Codes that shall be queried.

uint16_t*
KeyVersionList

The queried KeyVersions are returned by this array. It has the same size as
ServiceCodeList, each KeyVersion is assigned to the order of appearance
of ServiceCodeList.

Return: If the operation was successful, the return value is true, otherwise it is
false.

28.4 Read Without Encryption

Use this function to read blocks of data from a authentication-not-required service. This function works
with all transponders supporting FeliCa technology.

bool FeliCa_ReadWithoutEncryption
(
int NumberOfServices,
const uint16_t* ServiceCodeList,
int NumberOfBlocks,
const uint16_t* BlockList,
byte* Data
);

Page 156 of 237

28 FeliCa

Parameters:

int NumberOfServices This parameter specifies the size of ServiceCodeList.

const uint16_t*
ServiceCodeList

This array holds the list of Service Codes. Currently, one Service Code can
be specified.

int NumberOfBlocks This parameter specifies the number of blocks that shall be read. The cur-
rent implementation allows reading of four blocks at a time.

const uint16_t*
BlockList

This array holds the list of blocks that shall be read.

byte* Data Block data which was read from the card is returned by this buffer. A block
has always 16 bytes of data, so the buffer must be dimensioned depending
on the number of blocks that shall be read. The block data is returned in the
order of appearance of the values of BlockList.

Return: If the operation was successful, the return value is true, otherwise it is
false.

28.5 Write Without Encryption

Use this function to write blocks of data to a authentication-not-required service. This function works with
all transponders supporting FeliCa technology.

bool FeliCa_WriteWithoutEncryption
(
int NumberOfServices,
const uint16_t* ServiceCodeList,
int NumberOfBlocks,
const uint16_t* BlockList,
const byte* Data
);

Parameters:

int NumberOfServices This parameter specifies the size of ServiceCodeList.

const uint16_t*
ServiceCodeList

This array holds the list of Service Codes. Currently, one Service Code can
be specified.

int NumberOfBlocks This parameter specifies the number of blocks that shall be written. The
current implementation allows writing of four blocks at a time.

const uint16_t*
BlockList

This array holds the list of blocks that shall be written.

const byte* Data Block data which shall be written to the card. A block has always 16 bytes of
data, so the buffer must hold NumberOfBlocks multiplied by 16 bytes of data.
The block data must be arranged in the order of appearance of the values
of BlockList.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 157 of 237

28 FeliCa

28.6 Transparent Data Exchange

This function can be used for transparent exchange of data between reader and FeliCa transponders, e.g.
for transponder commands which are not covered by the current implementation of the reader API.

bool FeliCa_TDX
(
byte* TXRX,
int TXByteCnt,
int* RXByteCnt,
int MaxRXByteCnt,
byte MaximumResponseTime,
byte NumberOfBlocks
);

Parameters:

byte* TXRX This buffer holds the byte-string that shall be transmitted to the transponder.
The response of the transponder is also returned by this parameter. Take
care for adequate dimensioning.

int TXByteCnt This parameter holds the number of bytes that shall be transmitted to the
transponder.

int* RXByteCnt After successful completion of this function, this parameter holds the number
of bytes that the transponder response contains.

int MaxRXByteCnt This parameter holds the array-size of TXRX in bytes.

byte
MaximumResponseTime

This parameter holds the parameter byte which shall be used for calculation
of the Maximum Response Time according to the calculation formula.

byte NumberOfBlocks This parameter holds the value n which shall be used for calculation of the
Maximum Response Time according to the calculation formula.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 158 of 237

29 Topaz Specific Transponder Operations

29 Topaz Specific Transponder Operations

29.1 Read UID

Use this function to manually read byte 0 to 3 of the UID and the header ROM. The remaining bytes 4 to 6
of the UID can be read e.g. by using the function Topaz_ReadByte.

bool Topaz_RID(byte* HR0, byte* HR1, byte* UID);

Parameters:

byte* HR0 The byte HR0 of the Header ROM is returned by this parameter.

byte* HR1 The byte HR1 of the Header ROM is returned by this parameter.

byte* UID The UID bytes 0 to 3 are returned by this buffer.

Return: If the operation was successful, the return value is true, otherwise it is
false.

29.2 Read Data

In order to read data from memory of Topaz transponders, there are two functions available. You may
choose between reading one single byte or even read the entire memory space.

29.2.1 Read Single Byte

Use this function to read one single byte from the memory of the transponder.

bool Topaz_ReadByte(const byte* UID, byte ADD, byte* Byte);

Parameters:

const byte* UID Specify byte 0 to 3 of the UID by this parameter.

byte ADD Specify the address in memory to be read from.

byte* Byte This parameter holds the byte which was read from the transponder.

Return: If the operation was successful, the return value is true, otherwise it is
false.

29.2.2 Read All Transponder Data

Use this function to read the entire memory of the transponder.

Page 159 of 237

29 Topaz Specific Transponder Operations

bool Topaz_ReadAllBlocks(const byte* UID, byte* HR0, byte* HR1, byte* Data);

Parameters:

const byte* UID Specify byte 0 to 3 of the UID by this parameter.

byte* HR0 The byte HR0 of the Header ROM is returned by this parameter.

byte* HR1 The byte HR1 of the Header ROM is returned by this parameter.

byte* Data The transponder memory data is returned by this buffer. The function returns
120 bytes, so take care for proper dimensioning.

Return: If the operation was successful, the return value is true, otherwise it is
false.

29.3 Write Data

In order to write data to the memory of Topaz transponders, there are two functions available. You may
chose between programming of data with preceding erase or without erase. So if the variant without erase
is selected, this results in logical ORing of data bits. In the initial state, all writeable data bytes of Topaz
are 0x00.

29.3.1 Write Single Byte With Erase

Use this function to write one byte to the memory of the transponder. A preceding erase cycle is performed
prior programming takes place.

bool Topaz_WriteByteWithErase(const byte* UID, byte ADD, byte Byte);

Parameters:

const byte* UID Specify byte 0 to 3 of the UID by this parameter.

byte ADD Specify the address in memory to be written to.

byte Byte This parameter holds the byte to be written.

Return: If the operation was successful, the return value is true, otherwise it is
false.

29.3.2 Write Single Byte Without Erase

Use this function to write one byte to the memory of the transponder. As no preceding erase cycle is
performed prior programming, the overall operation results in logical ORing of the existing data byte on the
transponder and the byte to be written.

bool Topaz_WriteByteNoErase(const byte* UID, byte ADD, byte Byte);

Page 160 of 237

29 Topaz Specific Transponder Operations

Parameters:

const byte* UID Specify byte 0 to 3 of the UID by this parameter.

byte ADD Specify the address in memory to be written to.

byte Byte This parameter holds the byte to be written.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 161 of 237

30 CTS Specific Transponder Operations

30 CTS Specific Transponder Operations

TWN4 offers support of CTS256B and CTS512B transponders. In order to read data from the memory,
the respective transponder must be selected by issuing the function SearchTag(). After successful search,
the transponder memory is ready for read and write operations. CTS transponders are organized in 16 or
32 blocks, each block contains 2 bytes of data.
Please note: CTS256B transponders remain silent after a write operation has been issued. As a conse-
quence, the respective write function returns an error. In order to handle this, it is recommended to perform
a verification read of the respective data block.

30.1 Read Block Data

Use this function in order to read a block of data from the transponder memory.

bool CTS_ReadBlock(int Block, byte* Data);

Parameters:

int Block Specify the address of the block to be read. The valid range of this parame-
ter depends on the transponder type.

byte* Data This parameter holds the data which was read from the tag if the operation
was successful. Note that this function always reads 2 bytes of data, so the
minimum array size of Data must be at least 2 bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

30.2 Write Block Data

Use this function to write data to a block of the transponder memory. This function performs a logical OR-
ing of already present block data and new data to be written. If the block shall be overwritten regardless of
its current content, the function CTS_UpdateBlock shall be used instead.

bool CTS_WriteBlock(int Block, const byte* Data);

Page 162 of 237

30 CTS Specific Transponder Operations

Parameters:

int Block Specify the address of the block to be written. The valid range of this pa-
rameter depends on the transponder type.

const byte* Data This parameter holds the data which shall be written to the tag. Note that
this function always writes 2 bytes of data, so the minimum array size of Data
must be at least 2 bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

30.3 Update Block Data

Use this function to write data to a block of the transponder memory. Data is written regardless of the
current content of the specified data block. Please note: Prior execution of this function, the transponder
system bits have to be refreshed in order to make this function work. This can be achieved by reading
block 1 of the transponder.

bool CTS_UpdateBlock(int Block, const byte* Data);

Parameters:

int Block Specify the address of the block to be written. The valid range of this pa-
rameter depends on the transponder type.

const byte* Data This parameter holds the data which shall be written to the tag. Note that
this function always writes 2 bytes of data, so the minimum array size of Data
must be at least 2 bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 163 of 237

31 SRX Specific Transponder Operations

31 SRX Specific Transponder Operations

TWN4 offers support of the ST SR transponder family like SRI, SRT or SRIX, called here SRX. In order to
read data from the memory, the respective transponder must be selected by issuing the function Search-
Tag(). After successful search, the transponder memory is ready for read and write operations. SRX
transponders are organized in blocks, each block contains 4 bytes of data.

31.1 Read Block Data

Use this function in order to read a block of data from the transponder memory.

bool SRX_ReadBlock(int Block, byte* Data);

Parameters:

int Block Specify the address of the block to be read. The valid range of this parame-
ter depends on the transponder type.

byte* Data This parameter holds the data which was read from the tag if the operation
was successful. Note that this function always reads 4 bytes of data, so the
minimum array size of Data must be at least 4 bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

31.2 Write Block Data

Use this function to write data to a block of the transponder memory.

bool SRX_WriteBlock(int Block, const byte* Data);

Parameters:

int Block Specify the address of the block to be written. The valid range of this pa-
rameter depends on the transponder type.

const byte* Data This parameter holds the data which shall be written to the tag. Note that
this function always writes 4 bytes of data, so the minimum array size of Data
must be at least 4 bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 164 of 237

32 Simple NDEF Exchange Protocol (SNEP)

32 Simple NDEF Exchange Protocol (SNEP)

This chapter handles transmission of NDEF (NFC Data Exchange Format) messages between a TWN4
reader and a NFC enabled device using the Simple NDEF Exchange Protocol. For message exchange, a
NFC Peer-to-Peer connection must have been established.
The SNEP service provides both a logical In-Box and a logical Out-Box for receiving and transmitting mes-
sages. Each message box works as FIFO, which enables reader and host-software to exchange even large
messages as a stream of data. This functionality is also useful to reduce outbound buffering on host side.
Each message box can manage only one message at the same time, so message-queuing is currently not
supported. Large messages that do not fit into the internal FIFO must be transmitted fragmented, so the
sending side must break up the message into smaller parts that fit into the FIFO, the receiving side must
reassemble the parts as a consequence. When dealing with large messages, it might become necessary
to read data from the FIFO fast enough during a ongoing transmission in order to prevent any tailbacks.
Note: This functionality is only available on TWN4 MultiTech based on Core Module.

32.1 Initialize SNEP Service

Use this function for initialization and starting of the built-in SNEP service. The function should be called at
last once before issuing SearchTag() with TagType HFTAG_NFCP2P enabled. Depending on the implemen-
tation of the counterpart NFC device, there might be a delay until the SNEP service is activated on both
communication peers. This time usually ranges around 100 ms up to 500 ms.

bool SNEP_Init(void);

Parameters: None.

Return: If the SNEP service was successfully started, the return value is true, oth-
erwise it is false.

32.2 Get Connection State

Use this function to query the current connection state of the SNEP service. This can be used for checking
e.g. any loss of the physical NFC Peer-to-Peer connection.

int SNEP_GetConnectionState(void);

Page 165 of 237

32 Simple NDEF Exchange Protocol (SNEP)

Parameters: None.

Return: SNEP_STATE_DEINIT: The SNEP service has not been started.

SNEP_STATE_SLEEP: The SNEP service has been started, but there is no
active connection.

SNEP_STATE_IDLE: The SNEP service is running, but there is currently no
active exchange of messages.

SNEP_STATE_CONNCLIENT: The SNEP service is running in client mode.

SNEP_STATE_CONNSERVER: The SNEP service is running in server mode.

32.3 Query Message FIFO

Use this function to get information of the respective message FIFO.

int SNEP_GetFragmentByteCount(int Direction);

Parameters:

int Direction Specify the message box to be queried by this parameter. Valid values are
DIR_OUT (Out-Box) or DIR_IN (In-Box), use one of these predefined con-
stants.

Return: If the In-Box is queried, the return value is the current number of bytes which
are available for reading from host side. If the Out-Box is queried, the return
value is the number of bytes that can be written to the FIFO.

Page 166 of 237

32 Simple NDEF Exchange Protocol (SNEP)

32.4 Transmit NDEF Message

This section handles transmission of NDEF messages. A typical communication flow for transmitting a
NDEF message looks like this:

Start SNEP service
⇓

Establish NFC Peer-to-Peer connection
⇓

Begin Message (Setup total message length)
⇓

Send Message Fragment 1
⇓

Send Message Fragment 2
⇓
...
⇓

Send Message Fragment n

32.4.1 Begin Message

Use this function to setup the total message length. A message can reach up to 4 GBytes.

bool SNEP_BeginMessage(uint32_t MsgByteCnt);

Parameters:

uint32_t MsgByteCnt Specify the total message length by this parameter.

Return: If the operation was successful, the return value is true. If a previously set
up message has not been transmitted completely, the return value is false.

32.4.2 Send Message Fragment

Use this function to store a fragment of a message in the Out-Box FIFO. The message must be transmitted
completely in order to make the FIFO available for new outgoing messages.

bool SNEP_SendMessageFragment(const byte* MsgFrag, int FragByteCnt);

Parameters:

const byte* MsgFrag Specify the buffer that holds the message fragment by this parameter.

int FragByteCnt This parameter holds the length the message fragment.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 167 of 237

32 Simple NDEF Exchange Protocol (SNEP)

32.4.3 Example

The following example demonstrates transmission of a NDEF message from a TWN4 MultiTech reader to
another NFC device running SNEP:

const byte NDEF_Message[] = { /* Your NDEF message */ };

void TransmitNDEFMessage(void)
{

// Wait for SNEP service is running
unsigned long SNEPConnectionStartTime = GetSysTicks();
// SNEP service must be at least in IDLE state
while (SNEP_GetConnectionState() < SNEP_STATE_IDLE)
{

if (GetSysTicks() - SNEPConnectionStartTime > 500)
return;

}
// Transmit NDEF message as long as a NFC connection is established
int FragmentOffset = 0;
int NDEF_MessageByteCnt = sizeof(NDEF_Message);
while (true)
{

if (SNEP_GetConnectionState() < SNEP_STATE_IDLE)
return;

// Get available buffer size from operating system for message fragmenting
FragmentSize = SNEP_GetFragmentByteCount(DIR_OUT);
if (FragmentSize > 0)
{

// Is this the first fragment?
if (FragmentOffset == 0)
{

// Yes, Setup message
if (!SNEP_BeginMessage(NDEF_MessageByteCnt))

return;
}
// Calculate fragment size
if (NDEF_MessageByteCnt - FragmentOffset <= FragmentSize)

FragmentSize = NDEF_MessageByteCnt - FragmentOffset;
// Send a fragment of the message
if (!SNEP_SendMessageFragment(&NDEF_Message[FragmentOffset], FragmentSize))

return;
FragmentOffset += FragmentSize;

}
// Was the message completely tansmitted?
if (FragmentOffset == NDEF_MessageByteCnt)

return;
}

}

#define MAXIDBYTES 10

byte ID[MAXIDBYTES];
int IDBitCnt;
int TagType;

int main(void)
{

// Enable NFC Peer-to-Peer mode

Page 168 of 237

32 Simple NDEF Exchange Protocol (SNEP)

SetTagTypes(0, TAGMASK(HFTAG_NFCP2P));

// Start SNEP service
SNEP_Init();

while (true)
{

// Search a transponder
if (SearchTag(&TagType, &IDBitCnt, ID, sizeof(ID)))
{

if (TagType == HFTAG_NFCP2P)
{

// Transmit NDEF message
TransmitNDEFMessage();

}
}

}
}

Page 169 of 237

32 Simple NDEF Exchange Protocol (SNEP)

32.5 Receive NDEF Message

This section handles reception of NDEF messages. A typical communication flow for receiving a NDEF
message looks like this:

Start SNEP service
⇓

Establish NFC Peer-to-Peer connection
⇓

Test Message (Get total message length)
⇓

Receive Message Fragment 1
⇓

Receive Message Fragment 2
⇓
...
⇓

Receive Message Fragment n

32.5.1 Test Message

Use this function to test if there is a new message available in the In-Box. The function returns the total
length of the message. A message can reach up to 4 GBytes.

bool SNEP_TestMessage(uint32_t* MsgByteCnt);

Parameters:

uint32_t* MsgByteCnt The total message length is returned by this parameter.

Return: If a message is available, the return value is true, otherwise it is false.

32.5.2 Receive Message Fragment

Use this function to receive a fragment of a message stored in the In-Box FIFO. A message must be read
completely from the FIFO in order to make it available for new incoming messages.

bool SNEP_ReceiveMessageFragment(byte* MsgFrag, int FragByteCnt);

Parameters:

byte* MsgFrag Specify the buffer that holds the message fragment by this parameter.

int FragByteCnt This parameter holds the length the message fragment to be read.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 170 of 237

32 Simple NDEF Exchange Protocol (SNEP)

32.5.3 Example

The following example demonstrates reception of a NDEF message from another NFC device running
SNEP:

void ReceiveNDEFMessage(void)
{

// Wait for SNEP service is running
unsigned long SNEPConnectionStartTime = GetSysTicks();
// SNEP service must be at least in IDLE state
while (SNEP_GetConnectionState() < SNEP_STATE_IDLE)
{

if (GetSysTicks() - SNEPConnectionStartTime > 500)
return;

}
// Receive all NDEF messages as long as a NFC connection is established
while (true)
{

uint32_t MessageSize;
byte Message[4096];
// Wait for a incoming NDEF message or loss of connection
while (!SNEP_TestMessage(&MessageSize))
{

if (SNEP_GetConnectionState() < SNEP_STATE_IDLE)
return;

}
// A NDEF message was announced. Now read it.
int FragmentOffset, FragmentSize;
for (FragmentOffset = 0; FragmentOffset < MessageSize; FragmentOffset += FragmentSize)
{
// Wait, till fragment of the message arrives

do
{

if (SNEP_GetConnectionState() < SNEP_STATE_IDLE)
return;

FragmentSize = SNEP_GetFragmentByteCount(DIR_IN);
}
while (FragmentSize == 0);
SNEP_ReceiveMessageFragment(&Message[FragmentOffset],FragmentSize);

}
// We read the entire NDEF message

}
}

#define MAXIDBYTES 10

byte ID[MAXIDBYTES];
int IDBitCnt;
int TagType;

int main(void)
{

// Enable NFC Peer-to-Peer mode
SetTagTypes(0, TAGMASK(HFTAG_NFCP2P));

// Start SNEP service
SNEP_Init();

Page 171 of 237

32 Simple NDEF Exchange Protocol (SNEP)

while (true)
{

// Search a transponder
if (SearchTag(&TagType, &IDBitCnt, ID, sizeof(ID)))
{

if (TagType == HFTAG_NFCP2P)
{

// Receive NDEF message
ReceiveNDEFMessage();
DoSomething();

}
}

}
}

Page 172 of 237

33 BLE Functions

33 BLE Functions

The reader TWN4 MultiTech 2 / 3 BLE supports LF / HF transponders and additionally BLE (Bluetooth Low
Energy). This allows to connect to all devices with the Bluetooth Standard 4.0 or greater: Android mobile
phones with Version 4.3 or greater, iPhones 4S, 5 or greater and PCs with Windows 8.1 / 10 and Bluetooth
hardware.

The App in the TWN4 MultiTech 2 / 3 BLE control the BLE module. There are commands for initialization,
setting connection parameters, do connection and e.g. reading / writing GATT data fields.

First of all initialize the BT Module. To make the extensive setting easier, simply call the function BLEInit
to set the wished configuration for starting the Module. The Mode parameter fills the environment variables
for the selected mode.

To set an own environment, use the functions BLEPresetConfig and BLEPresetUserData followed with
BLEInit(0).

After initialization call the function BLECheckEvent for checking events of Bluetooth. It’s good to use a call
frequency of about 100ms. This would be fine. Slower calling slows the BLE functionality. Faster is not
necessary but no problem.

Environmet information are called by BLEGetAddress for the address of the reader, the address for the
connected device and the type of this address. Information of the firmware ask with BLEGetVersion and
at least connection environment with BLEGetEnvironment.

To request the latest RSSI call the function BLERequestRssi if a connection has established. The RSSI
value is returned by the event BLE_EVENT_CONNECTION_RSSI. Closing a connection is thrown with
BLERequestEndpointClose. But also an automatic closing is carried out by the set timeout at initializa-
tion.

Server functions:
The GATT (Generic Attribute Profile) on the BLE module can be read with BLEGetGattServerAttribute-
Value and written with BLESetGattServerAttributeValue.

Client functions:
For the client reader mode, the GATT server is e.g. on a mobile phone. Use the BLEDiscover() func-
tion to start, stop, discover services and characteristics. The BLEConnectToDevice() and BLEDiscon-
nectFromDevice() functions make a connection. Invoke BLEGattGetAttribute(), BLEGattGetValue() and
BLEGattSetValue() for read and write GATT server fields on a remote device.

The BLE Module on the TWN4 MultiTech BLE communicates serial with the main core. COM2 is reserverd
for the communication with the BLE Modul and GPIO7 is the reset of the BLE Module. So do not use COM2
and GPIO7 for other things on the hardware TWN4 MultiTech 2 / 3 BLE.

Page 173 of 237

33 BLE Functions

33.1 GATT Server Definition

UUID
(hex)

Attr.
Handle

Name R/W Type Description

1800 General Access Service Service 1

2a00 7 Device name R/W Descriptor xgatt_1800_2A00,
fix "TWN4 BLE"

2a01 9 Appearance R/W Descriptor xgatt_1800_2A01,
fix 0000

180a Device Information Service Service 2

2a29 12 Manufacturer Name R Descriptor xgatt_180A_2A29,
fix "OEM BLE"

2a24 14 Model Number R Descriptor xgatt_180A_2A24,
"TWN4 MultiTech"

2a25 16 Serial Number R/W Descriptor xgatt_180A_2A25

2a26 18 Firmware Revision R Descriptor xgatt_180A_2A26,
f.e. "BT1.05EL"

Table 33.1: Read-only Bluetooth Standard-defined GATT Services

UUID
Name

Attr.
Handle

Name R/W Type Description

UID1 Custom Service Service 3

UID2 21 SPP Data Read, Write no
resp., Notify, Indic.

Descriptor xgatt_spp_data
var. length=255, HEX

UID3 24 SP1 Data Write no resp.,
Notify, Indicate

Descriptor xgatt_sp1_data
var. length=20, HEX

UID4 27 SP2 Data Read, Notify,
Indicate

Descriptor xgatt_sp2_data
var. length=20, HEX

UID5 30 SP3 Data Read, Write,
Notify, Indicate

Descriptor xgatt_sp3_data
var. length=255, HEX

Table 33.2: Custom GATT Services defined within Firmware

UUID
Name

User UUID (hex) Description

UID1 "5a44c004-4112-4274-880e-cd9b3daedf8e" SPP Service

UID2 "43c29edf-2f0a-4c43-aa22-489d169ec752" xgatt_spp_data

UID3 "a897339f-adf0-4a2b-a2ef-4a57512e6eb6" xgatt_sp1_data

UID4 "71f1ae4d-e1d1-438c-b05d-2c2c16abeaa7" xgatt_sp2_data

UID5 "495f449c-fc60-4048-b53e-bdb3046d4495" xgatt_sp3_data

Table 33.3: Definition of Custom UUIDs

Page 174 of 237

33 BLE Functions

33.2 BLEPresetConfig

This function presets the individual configuration structure for the BLE module. The initialization command
BLEInit is necessary after this - optional also the BLEPresetUserData.

bool BLEPresetConfig
(

TBLEConfig* BLEConfig
);

Parameters:

TBLEConfig* Reference to the structure that holds the BLE configuration parameters. See
the description of TBLEConfig for details.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Members Length
(Bits)

Description

uint32_t ConnectTimeout 32 Timout of an established connection in milliseconds.

byte Power 8 TX power in 0.1dBm steps in the range 0 to 80 (0.0dBm to
8.0dBm).
Please note: It is not allowed to set the value more than
20 (2.0 dBm) for the TWN4 MultiTech 2 BLE desktop hous-
ing version. The value above the limit falls under complete
integrator/user responsibility.

byte BondableMode 8 Bonding:
0 = Off,
1 = On.
If additionaly Bit5=1, transparent mode is deactivated.
If additionaly Bit6=1, discover mode is activated.
If additionaly Bit7=1, self defined UserData (with function
BLEPresetUserData(..)) are used.

uint16_t AdvInterval 16 Advertisement interval: values 20ms to 10240ms

byte ChannelMap 8 Advertisement Bluetooth channels:
1 = CH37,
2 = CH38,
3 = CH37 + CH38,
4 = CH39,
5 = CH37 + CH39,
6 = CH38 + CH39,
7 = CH37 + CH38 + CH39.

Page 175 of 237

33 BLE Functions

byte DiscoverMode 8 Discoverable Modes, which dictate how the device is visible
to other devices:
0 = LE_GAP_NON_DISCOVERABLE,
1 = LE_GAP_LIMITED_DISCOVERABLE,
2 = LE_GAP_GENERAL_DISCOVERABLE,
3 = LE_GAP_BROADCAST,
4 = LE_GAP_USER_DATA,
Discover Mode to use when scanning for advertising de-
vices:
20 = LE_GAP_DISCOVER_LIMITED,
21 = LE_GAP_DISCOVER_GENERIC,
22 = LE_GAP_DISCOVER_OBSERVATION.

byte ConnectMode 8 Connectable Modes for the LE (Low Energy) GAP (Generic
Access Profile):
0 = LE_GAP_NON_CONNECTABLE,
1 = LE_GAP_DIRECTED_CONNECTABLE,
2 = LE_GAP_CONNECTABLE_SCANNABLE,
3 = LE_GAP_SCANNABLE_NON_CONNECTABLE,
4 = LE_GAP_CONNECTABLE_NON_SCANNABLE.

byte SecurityFlags 8 Security requirement bitmask:
Bit 0 = 0: Allow bonding without MITM protection,
Bit 0 = 1: Bonding requires MITM protection,
Bit 1 = 0: Allow encryption without bonding,
Bit 1 = 1: Encryption requires bonding,
Bit 2 to 7: Reserved, Default value: 0x00.

byte IOCapabilities 8 Security Management related I/O capabilities:
0 = display only,
1 = display yes/no,
2 = keyboard only,
3 = no input / no output,
4 = keyboard / display

uint32_t Passkey 32 Passkey: If security is configured, the application needs to
display or ask user to enter a passkey during the bonding
process. See:
BLE_EVENT_SM_PASSKEY_DISPLAY or
BLE_EVENT_SM_PASSKEY_REQUEST.

Table 33.4: Definition of TBLEConfig

33.3 BLEPresetUserData

This function sets the user data string for advertising. F.e. the Apple company has introduced iBeacons to
broadcast their identifier to nearby portable electronic devices. If you discover an iBeacon or common a
Beacon, you get his UUID, Major and Minor values. With the TWN4 MultiTech 2 BLE, you can configure
the reader to be a Beacon.

bool BLEPresetUserData
(

Page 176 of 237

33 BLE Functions

byte ScanResp,
const byte* UserData,
int UserDataLength

);

Parameters:

byte ScanResp Selection the type showing user data:
0 = advertise packets,
1 = scan packets.

const byte* UserData Reference to the byte buffer that holds the UserData parameters. See the
description of UserData for details.

int UserDataLength Length of the UserData. Maximum data length is 62 Bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Members Length
(Bits)

Value
(f.e.)

Description

UserData[0] 8 0x02 Length of the Flags field - 2 bytes.

UserData[1] 8 0x01 Length of the Flags field - high byte.

UserData[2] 8 0x06 Length of the Flags field - low byte.

UserData[3] 8 0x1A Length of the Manufacturer Data field - 26 bytes.

UserData[4] 8 0xFF Data type / Manufacturer specific data / Type of
the Manufacturer Data field.

UserData[5] 8 0x4C Manufacturer data - high byte, Company ID field -
0x4C00 = Apple’s Bluetooth SIG ID.

UserData[6] 8 0x00 Manufacturer data - low byte.

UserData[7] 8 0x02 Manufacturer data - high byte, Beacon Type field
- 0x0215 = iBeacon.

UserData[8] 8 0x15 Manufacturer data - low byte.

UserData[9] 8 0xE2 UUID E2C56DB5-DFFB-48D2-B060-
D0F5A71096-E0 (Apple AirLocate Service)

UserData[10] 8 0xC5

UserData[11] 8 0x6D

UserData[12] 8 0xB5

UserData[13] 8 0xDF

UserData[14] 8 0xFB

UserData[15] 8 0x48

UserData[16] 8 0xD2

UserData[17] 8 0xB0

UserData[18] 8 0x60

UserData[19] 8 0xD0

UserData[20] 8 0xF5

UserData[21] 8 0xA7

Page 177 of 237

33 BLE Functions

UserData[22] 8 0x10

UserData[23] 8 0x96

UserData[24] 8 0xE0

UserData[25] 8 0x00 The Major high value, which is used to group re-
lated beacons.

UserData[26] 8 0x00 The Major low value.

UserData[27] 8 0x00 The Minor high value, which is used to specify in-
dividual beacon within a group.

UserData[28] 8 0x00 The Minor low value.

UserData[29] 8 0xC3 Signal power (calibrated RSSI) - See the iBeacon
specification for measurement guidelines.

Table 33.5: Example of UserData

33.4 BLEInit

This function initialize the Bluetooth BLE Module on the reader. Different modes are possible: The
custom mode makes individual operating modes possible - pre configured with BLEPresetConfig and
BLEPresetUserData. The other modes are predefined modes for advertisment and Beacon.

bool BLEInit
(
int Mode
);

Parameters:

int Mode Specify the initialization mode. See the definition of Mode for meaning of
each member.

Return: If the operation was successful, the return value is true, otherwise it is
false.

BLE_MODE_CUSTOM 0 BLE Custom mode for previously defined configuration with
functions BLEPresetConfig and BLEPresetUserData.

BLE_MODE_ADVERTISEMENT 1 BLE advertisement mode with no encryption and no bond-
ing.

BLE_MODE_BEACON 2 BLE Beacon mode for mobile devices.

BLE_MODE_ADVERTISEMENT_SM 3 BLE advertisement mode with Security Management:
Bonding with no input and no output (SecurityFlags=3).

BLE_MODE_PACK_ID 4 BLE Beacon mode with connect (Special customer mode).

Page 178 of 237

33 BLE Functions

BLE_MODE_DISCOVER 5 BLE Discover mode for advertising nearby BLE devices. If a
device is found, the event "BLE_EVENT_LE_GAP_SCAN_
RESPONSE" is generated. This event can be parsed
with BLECheckDiscoveredString(). BLEGetAddress() gives
the remote address and type of the device found. The
BLERequestRssi() function communicates the RSSI value
from the remote device.

BLE_MODE_MOBILE_BADGE_2_0 10 Enable "Mobile Badge 2.0" authentication using Search-
Tag(..) function. The function returns Phone ID or other
data, sent from the phone application, after established
connection. Use for applications with narrow adjustment
range.

BLE_MODE_MOBILE_BADGE_2_0
_AT2

11 The same initialization as "BLE_MODE_MOBILE
_BADGE_2_0". Use for applications with wide adjust-
ment range.

BLE_MODE_CH0_RX_CARRIER 247 Receiver test, channel 0.

BLE_MODE_CH19_RX_CARRIER 248 Receiver test, channel 19.

BLE_MODE_CH39_RX_CARRIER 249 Receiver test, channel 39.

BLE_MODE_CH0_CONTINUOUS
_CARRIER

250 Modulated test carrier, channel 0. Note: Parameter Chan-
nelMap in structure BLEConfig from function BLEPreset-
Config is the individual "Test Packet Type".

BLE_MODE_CH19_CONTINUOUS
_CARRIER

251 Modulated test carrier, channel 19. Note: Parameter Chan-
nelMap in structure BLEConfig from function BLEPreset-
Config is the individual "Test Packet Type".

BLE_MODE_CH39_CONTINUOUS
_CARRIER

252 Modulated test carrier, channel 39. Note: Parameter Chan-
nelMap in structure BLEConfig from function BLEPreset-
Config is the individual "Test Packet Type".

BLE_MODE_CHX_RX_CARRIER 253 Receiver test, channel X. Note: Parameter DiscoverMode in
structure BLEConfig from function BLEPresetConfig is the
channel.

BLE_MODE_CHX_TX_CARRIER 254 Transmitter test, channel X. Note: Parameter DiscoverMode
in structure BLEConfig from function BLEPresetConfig is
the channel and ChannelMap the individual "Test Packet
Type".

BLE_MODE_OFF 255 BLE no longer active.

Table 33.6: Definition of Mode

33.5 BLECheckEvent

This function returns the actual event of the BLE module. The returned event tells different status mes-
sages of the Bluetooth environment either information or user action.

int BLECheckEvent
(

void

Page 179 of 237

33 BLE Functions

);

Parameters: None.

Return: Specify the event. See the definition in the table below

BLE_EVENT_NONE 0x00 No event.

BLE_EVENT_ENDPOINT_CLOSING 0x21 This event indicates that an endpoint is
closing or that the remote has terminated
the connection.

BLE_EVENT_ENDPOINT_DATA 0x22 This event indicates incoming data from an
endpoint.

BLE_EVENT_ENDPOINT_STATUS 0x23 This event indicates an endpoint’s status.

BLE_EVENT_ENDPOINT_SYNTAX_ERROR 0x24 This event indicates that a protocol error to
the BLE module was detected.

BLE_EVENT_GATT_MTU_EXCHANGED 0x45 This event indicates that a GATT MTU ex-
change procedure has been completed.

BLE_EVENT_GATT_SERVER_ATTRIBUTE
_VALUE

0x51 This event indicates that the value of an at-
tribute in the local GATT database has been
changed by a remote GATT client.

BLE_EVENT_GATT_SERVER_CHARACTERISTIC
_STATUS

0x52 This event indicates either that a local Client
Characteristic Configuration descriptor has
been changed by the remote GATT client,
or that a confirmation from the remote GATT
client was received upon a successful re-
ception of the indication.

BLE_EVENT_GATT_CHARACTERISTIC 0x53 This event indicates that a GATT character-
istic in the remote GATT database was dis-
covered.

BLE_EVENT_GATT_CHARACTERISTIC_VALUE 0x54 This event indicates that the value of a char-
acteristic in the remote GATT server was re-
ceived.

BLE_EVENT_GATT_SERVICE 0x55 This event indicates that a GATT service in
the remote GATT database was discovered.

BLE_EVENT_GATT_PROCEDURE_COMPLETED 0x56 This event indicates that the current GATT
procedure has been completed success-
fully.

BLE_EVENT_CONNECTION_CLOSED 0x71 This event indicates that a connection was
closed.

BLE_EVENT_CONNECTION_OPENED 0x72 This event indicates that a new connection
was opened, whether the devices are al-
ready bonded, and what is the role of the
Bluetooth device (Slave or Master). An
open connection can be closed with the
command BLERequestEndpointClose.

Page 180 of 237

33 BLE Functions

BLE_EVENT_CONNECTION_PARAMETERS 0x73 This event is triggered whenever the con-
nection parameters are changed and at any
time a connection is established.

BLE_EVENT_CONNECTION_RSSI 0x74 This event is triggered when an
BLERequestRssi command has com-
pleted.

BLE_EVENT_LE_GAP_SCAN_RESPONSE 0x81 This event reports any advertisement
packet that is received by the device’s radio
while in scanning mode.

BLE_EVENT_LE_GAP_EXTENDED_SCAN
_RESPONSE

0x82 This event reports any advertisement or
scan response packet that is received by
the device’s radio while in scanning mode.

BLE_EVENT_SM_BONDED 0x91 This event is triggered after the pairing or
bonding procedure has been successfully
completed.

BLE_EVENT_SM_BONDING_FAILED 0x92 This event is triggered if the pairing or bond-
ing procedure has failed.

BLE_EVENT_SM_LIST_ALL_BONDINGS
_COMPLETE

0x93 This event is triggered by the
BLE_EVENT_SM_LIST_BONDING
_ENTRY.

BLE_EVENT_SM_LIST_BONDING_ENTRY 0x94 This event is triggered if bondings exist in
the local database.

BLE_EVENT_SM_PASSKEY_DISPLAY 0x95 This event indicates a request to display the
passkey to the user.

BLE_EVENT_SM_PASSKEY_REQUEST 0x96 This event indicates a request for the user to
enter the passkey displayed on the remote
device.

BLE_EVENT_SM_CONFIRM_BONDING 0x99 This event indicates a request to display
that new bonding request has been re-
ceived to the user and for the user to con-
firm the request.

BLE_EVENT_SM_CONFIRM_PASSKEY 0x9A This event indicates a request to display the
passkey to the user and for the user to con-
firm the displayed passkey.

BLE_EVENT_SYSTEM_BOOT 0xA2 This event indicates the device has started
and the radio is ready. This even carries the
firmware build number and other SW and
HW identification codes saved in the func-
tion BLEGetVersion.

BLE_EVENT_DTM_COMPLETED 0xF0 This event indicates that the RF section has
processed a test start or end command.

Table 33.7: Definition of Event

Page 181 of 237

33 BLE Functions

33.6 BLEGetAddress

This function returns the device address from the BLE module, the remote address from the connected
device and the address type of the remote address.

bool BLEGetAddress
(

byte* DeviceAddress,
byte* RemoteAddress,
byte* Type

);

Parameters:

byte* DeviceAddress The device address of the BLE module in 6 bytes hex is returned by this
parameter.

byte* RemoteAddress The remote address of the connected device in 6 bytes hex is returned, if
the remote device is successfull connected. For additional information of
the remote address see the Type parameter.

byte* Type The type of the remote address is returned by this parameter. Possible
values are:
0 = public address,
1 = random address,
2 = public identity address resolved by stack,
3 = random identity address resolved by stack,
4 = Classic Bluetooth address.

Return: If the operation was successful, the return value is true, otherwise it is
false.

33.7 BLEGetVersion

This function returns on the one hand the version string of the BLE module firmware in ASCII format and
on the other the boot string of the BLE hardware. Requirement: BLEInit() with any parameter is called
first.

bool BLEGetVersion
(

byte* HWVersion,
byte* BootString

);

Page 182 of 237

33 BLE Functions

Parameters:

byte* HWVersion The firmware version string (16 bytes) in ASCII code is returned by this pa-
rameter. Example: "V1.03,14.11.2016"

byte* BootString The boot string of the BLE hardware is returned. The information is binary
coded in 12 bytes with the following information:
Byte 0 : Major release version,
Byte 1 : HW-Device
(0 = any BGM device, 1 = BGM111, 2 = BGM121, 3 = BGM11S, 4 =
BGM113), For this selection the BLE Chipversion V1.06 or higher and Dev-
Pack 3.22 or higher is needed!
Byte 2 - 3: Minor release version,
Byte 4 - 5: Patch release number,
Byte 6 - 7: Build number,
Byte 8 - 9: Bootloader version,
Byte 10 - 11: Hardware type.

Return: If the operation was successful, the return value is true, otherwise it is
returned false.

33.8 BLEGetEnvironment

This function can be used to ask for connection enviroment on a connected device.

bool BLEGetEnvironment
(

byte* DeviceRole,
byte* SecurityMode,
byte* Rssi

);

Parameters:

byte* DeviceRole The device role of the connection is returned:
0 = Slave,
1 = Master.

byte* SecurityMode The security mode of the established connection is returned. Possible val-
ues are:
0 = No security.
1 = Unauthenticated pairing with encryption.
2 = Authenticated pairing with encryption.
3 = Authenticated Secure Connections pairing with encryption using a 128-
bit strength encryption key.

byte* Rssi RSSI (field strength) of the BLE connection
Range: -127 to +20. Units: dBm.

Return: If the operation was successful, the return value is true, otherwise it is
returned false.

Page 183 of 237

33 BLE Functions

33.9 BLEGetGattServerAttributeValue

This function returns the data of a GATT attribute handle. If the event
"BLE_EVENT_GATT_SERVER_ATTRIBUTE_VALUE" is called, call the function with the AttrHandle and
Bit 15 set to 1.

bool BLEGetGattServerAttributeValue
(

int AttrHandle,
byte *Data,
int *Len,
int MaxLen

);

Parameters:

int AttrHandle Specify the attribute handle of the GATT who is se-
lected to read. Additional set Bit15 to 1 if the event
"BLE_EVENT_GATT_SERVER_ATTRIBUTE_VALUE" is called.

byte *Data The read data of the given attribute handle is returned by this parameter.

int *Len This parameter holds the length of data which was read from the GATT.

int MaxLen Maximum number of characters, the specified byte array can receive exclud-
ing the 0-termination.

Return: If the operation was successful, the return value is true, otherwise it is
returned false.

33.10 BLESetGattServerAttributeValue

This function writes data to an attribute handle. Notice that the GATT attribute must be writeable.

bool BLESetGattServerAttributeValue
(

int AttrHandle,
int Offset,
const byte *Data,
int Len

);

Parameters:

int AttrHandle Specify the attribute handle of the GATT for writing data. If Bit 15 of the
AttrHandle is set, the GATT field is written and a notification is sent to the
connected slave.

int Offset Specify the starting address for writing to data. The valid range of this pa-
rameter is 0 to Len-1.

byte *Data The write data buffer to the attribute handle with the specifyed offset.

int Len This parameter holds the length of data which shall be written to the GATT.

Return: If the operation was successful, the return value is true, otherwise it is
returned false.

Page 184 of 237

33 BLE Functions

33.11 BLERequestRssi

This function calls a request for the latest RSSI of a Bluetooth connection. The value of the RSSI is
returned by an event BLE_EVENT_CONNECTION_RSSI with function BLECheckEvent. The function makes
only sense if there is a established connection with a remote device. If the module is in discovery mode,
the function BLECheckEvent returns the current RSSI of the scanned device.

bool BLERequestRssi
(

void
);

Parameters: None.

Return: If the operation was successful, the return value is true, otherwise it is
returned false.

33.12 BLERequestEndpointClose

This function closes a connection with the remote device. If the connection is closed, the function BLECheckEvent
returns the event BLE_EVENT_CONNECTION_CLOSED for successfull closing.

bool BLERequestEndpointClose
(

void
);

Parameters: None.

Return: If the operation was successful, the return value is true, otherwise it is
returned false.

33.13 BLEGetGattServerCharacteristicStatus

This function can be used after the event BLE_EVENT_GATT_SERVER_CHARACTERISTIC_STATUS to
ask for GATT field characteristic change through a client. With the same function ask after the event
BLE_EVENT_GATT_SERVER_ATTRIBUTE_VALUE for the GATT AttrHandle number.

bool BLEGetGattServerCharacteristicStatus
(

int *AttrHandle,
int *AttrStatusFlag,
int *AttrConfigFlag

);

Page 185 of 237

33 BLE Functions

Parameters:

int *AttrHandle GATT characteristic handle.

int *AttrStatusFlag Describes whether Client Characteristic Configuration was changed or if
confirmation was received:
1 = Characteristic client configuration has been changed.
2 = Characteristic confirmation has been received.

int *AttrConfigFlag This field carries the new value of the Client Characteristic Configuration:
0 = Disable notifications and indications.
1 = Notification.
2 = Indication.

Return: If the operation was successful, the return value is true, otherwise it is
returned false.

33.14 BLEFindGattServerAttribute

This command can be used to find attributes of certain type from a local GATT database. Type is usually
given as 16-bit (2 byte) or 128-bit (16 byte) UUID.

bool BLEFindGattServerAttribute
(

const byte *UUID,
int UUIDLength,
int *AttrHandle

);

Parameters:

const byte *UUID 16-bit or 128-bit UUID of the local GATT database.

int UUIDLength Length of the UUID in bytes (e.g. 2 or 16).

int *AttrHandle The GATT characteristic attribute handle is returned by this parameter.

Return: If the operation was successful, the return value is true, otherwise it is
returned false.

33.15 BLEDiscover

This function starts with discovering devices, services and characteristics - depending on the Discover-
Mode parameter. Unnecessary parameters of the function are assigned zero.

bool BLEDiscover
(

int DiscoverMode,
unsigned long GattHandle,
const TBLEUUID *BLEUUID

);

Page 186 of 237

33 BLE Functions

Parameters:

int DiscoverMode Mode parameter to discover devices, services and characteristics. See the
DiscoverMode table below.

unsigned long GattHandleDepending on parameter DiscoverMode the handle of a GATT field.

const TBLEUUID *BLEUUID Depending on parameter DiscoverMode the UUID of a GATT filed.

Return: If the operation was successful, the return value is true, otherwise it is
returned false.

Members Length
(Bytes)

Description

byte UUIDLength 1 Length of a UUID.

byte UUID[16] 16 UUID of a GATT field.

Table 33.8: Definition of TBLEUUID

BLE_DISC_START_PHY_1M 0 Start discovering with PHY "1M". No spe-
cial parameter contents are required: Set
these parameters (GattHandle and BLEU-
UID) to zero. If a device is found, the event
"BLE_EVENT_LE_GAP_SCAN_
RESPONSE" is generated. This event
can be parsed with BLECheckDiscovered-
String(). BLEGetAddress() gives the remote
address and type of the device found.

BLE_DISC_STOP_PHY_1M 1 Stop discovering regarding to PHY "1M".
No special parameter contents are re-
quired: Set these parameters (GattHandle
and BLEUUID) to zero.

BLE_DISC_SERVICE 10 Start discovering all services on a con-
nected device. No special parameter con-
tents are required: Set these parameters
(GattHandle and BLEUUID) to zero.
The generated events for discovered ser-
vices are "BLE_EVENT_GATT_SERVICE"
and at the end "BLE_EVENT_GATT_
PROCEDURE_COMPLETED". The ser-
vice event data are displayed using BLE-
GattGetAttribute(..) function.

BLE_DISC_SERVICE_WITH_UUID 11 Starts to discover a service with a well-
known UUID on a connected device.
Parameter BLEUUID is needed and
GattHandle not (set it to zero).
The generated event "BLE_EVENT_GATT_
PROCEDURE_COMPLETED" indicates
the success of the found UUID.

Page 187 of 237

33 BLE Functions

BLE_DISC_CHARAC 20 Start discovering all characteristics with
service handle on a connected device.
The service handle is needed and the
BLEUUID not. Set it to zero. The generated
events for discovered characteristic are
"BLE_EVENT_GATT_CHARACTERISTIC"
and at the end "BLE_EVENT_GATT_
PROCEDURE_COMPLETED". The char-
acteristic event data are displayed using
BLEGattGetAttribute(..) function.

BLE_DISC_CHARAC_WITH_UUID 21 Starts to discover a characteristic with
well-known service handle and character-
istic UUID on a connected device. The
generated event "BLE_EVENT_GATT_
PROCEDURE_COMPLETED" indicates
the success.

BLE_SET_CHARAC_DISABLE_NOTIF_INDIC 30 This command can be used to disable the
notifications and indications being sent from
a remote GATT server.

BLE_SET_CHARAC_NOTIFICATION 31 This command can be used to enable
notifications being sent from a remote
GATT server. The generated event is
BLE_EVENT_GATT_CHARACTERISTIC_
VALUE".

BLE_SET_CHARAC_INDICATION 32 This command can be used to enable
indications being sent from a remote
GATT server. The generated event is
BLE_EVENT_GATT_CHARACTERISTIC_
VALUE". The needed confirmation for the
received event is automatically send.

Table 33.9: Definition of DiscoverMode

33.16 BLECheckDiscoveredString

In discover mode, the event "BLE_EVENT_LE_GAP_SCAN_RESPONSE" or "BLE_EVENT_LE_GAP_EXTENDED_SCAN_RESPONSE"
indicates the response of discovered devices. Each time the event occurs, it is recommended to parse the
discovered string with this function.

bool BLECheckDiscoveredString
(

int CheckMode,
const byte* CompareString,
int Length

);

Page 188 of 237

33 BLE Functions

Parameters:

int CheckMode Mode parameter for different comparisons. See the CheckMode table be-
low.

const byte *CompareStringCompare string for different CheckModes.

int Length Length of the CompareString in bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

BLE_CHECK_NAME 0 Compares the discovered device name with
the passed parameter CompareString (LO-
CAL NAME, TYPE 0x08 and 0x09).

BLE_CHECK_UUID 3 Compares the discovered UUID with the
passed parameter CompareString (SER-
VICE UUID, TYPE 0x02 to 0x07 (16bit, 32
bit, 128 bit UUID)).

BLE_CHECK_TX_POWER_LEVEL 4 Compares the discovered power level with
the passed parameter CompareString (TX
POWER LEVEL, TYPE 0x0A).

BLE_CHECK_SIMPLE_PAIRING 5 Compares the discovered simple pairing
with the passed parameter CompareString
(SIMPLE PAIRING, TYPE 0x0D to 0x0F).

BLE_CHECK_SERVICE_DATA 6 Compares the discovered service data
with the passed parameter CompareString
(SERVICE DATA, TYPE 0x16).

BLE_CHECK_MANUFACTURER_DATA 7 Compares the discovered manufacturer
string with the passed parameter Compare-
String (MANUFACTURER DATA, TYPE
0xFF).

Table 33.10: Definition of CheckMode

33.17 BLEConnectToDevice

This function connects a device with Address (MAC) and AdressType. The Address and Type can be
requested with the function BLEGetAddress(..) described above.

bool BLEConnectToDevice
(

const byte *Address,
byte AddressType

);

Page 189 of 237

33 BLE Functions

Parameters:

const byte *Address The address of a device to connect to with 6 bytes Hex.

byte AddressType The type of the address. Possible values are:
0 = public address,
1 = random address,
4 = Classic Bluetooth address.

Return: If the operation was successful, the return value is true, otherwise it is
false.

33.18 BLEDisconnectFromDevice

This function disconnects from a connected device.

bool BLEDisconnectFromDevice
(

void
)

Parameters: None.

Return: If the operation was successful, the return value is true, otherwise it is
false.

33.19 BLEGattGetAttribute

This function reads GATT attributes at specific event:

The relevant data of "BLE_EVENT_GATT_SERVICE" or "BLE_EVENT_GATT_CHARACTERISTIC" event
passes to this function, when discovering services or characteristics is started.

bool BLEGattGetAttribute
(

TBLEUUID *BLEUUID,
unsigned long *GattHandle

)

Parameters:

TBLEUUID *BLEUUID Returns the UUID of the discovered field.

byte *Handle Returns the handle of the GATT field that was found.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Members Length
(Bytes)

Description

byte UUIDLength 1 Length of the UUID.

byte UUID[16] 16 UUID of the GATT field.

Table 33.11: Definition of TBLEUUID

Page 190 of 237

33 BLE Functions

33.20 BLEGattGetValue

This function returns the read data of a GATT field.

bool BLEGattGetValue
(

int ReadMode,
unsigned long GattHandle,
const TBLEUUID *BLEUUID,
byte *AttrOpcode,
byte *Data,
int *Len,
int MaxLen

)

Parameters:

int ReadMode Mode parameter for different read modes. See table ReadMode below.

unsigned long GattHandleDepending on the read mode, specify a charcteristic or service handle of the
GATT field.

const TBLEUUID *BLEUUID Depending on the read mode, specify the UUID of the GATT field.

byte *AttrOpcode Returns the Attribute Opcode of the read GATT field. See table AttrOpcode
below.

byte *Data The read data is returned by this parameter.

int *Len This parameter contains the length of data from the read GATT field. If the
length is 0, the Data are not valid.

int MaxLen The max length of the read data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

BLE_READ_CHARAC 0 Read a GATT field with a specific character-
istic handle.

BLE_READ_SERVICE_WITH_UUID 1 Read a GATT field with a specific service
handle and characteristic UUID.

BLE_READ_CHARAC_WITH_OFFSET 2 Read a GATT field with a specific character-
istic handle. The offset is fix 0. Longer data
is merged.

Page 191 of 237

33 BLE Functions

BLE_READ_CHARAC_WITH_VALUE_EVENT 3 Read a GATT field with a specific charac-
teristic handle.
Requirement:
The requested characteristic has to sup-
port Notify attribute. The activation of
the notification has to be performed
prior execution of this function. This is
accomplished with the function "BLEDis-
cover(BLE_SET_CHARAC_NOTIFICATION,
...)". The activation is possible only after a
successful connection with the server.
Note: When the characteristic is
changed from the GATT server side
(written with notification), the event
"BLE_EVENT_GATT_CHARACTERISTIC_
VALUE" is generated on the GATT client
side. The event data can be checked with
parameter "AttrOpcode". This value should
be the GattHandle of the Data.

Table 33.12: Definition of ReadMode

gatt_read_by_type_request 8 Read by type request

gatt_read_by_type_response 9 Read by type response

gatt_read_request 10 Read request

gatt_read_response 11 Read response

gatt_read_blob_request 12 Read blob request

gatt_read_blob_response 13 Read blob response

gatt_read_multiple_request 14 Read multiple request

gatt_read_multiple_response 15 Read multiple response

gatt_write_request 18 Write request

gatt_write_response 19 Write response

gatt_write_command 82 Write command

gatt_prepare_write_request 22 Prepare write request

gatt_prepare_write_response 23 Prepare write response

gatt_execute_write_request 24 Execute write request

gatt_execute_write_response 25 Execute write response

gatt_handle_value_notification 27 Notification

gatt_handle_value_indication 29 Indication

Table 33.13: Values of AttrOpcode

Page 192 of 237

33 BLE Functions

33.21 BLEGattSetValue

This function writes data to a characteristic handle.

bool BLEGattSetValue
(

int WriteMode,
unsigned long GattHandle,
int Offset,
const byte *Data,
int DataLength

)

Parameters:

int WriteMode Mode parameter for different write modes. See table WriteMode below.

unsigned long GattHandleSpecify the characteristic handle of the GATT for writing data.

int Offset Specify the starting address for writing data. The valid range of this param-
eter is 0 to Len-1.

const byte *Data The passed write data buffer.

int DataLength This parameter holds the length of data which shall be written to the GATT.

Return: If the operation was successful, the return value is true, otherwise it is
false.

BLE_WRITE_CHARAC 0x00 Write data to a GATT field with a specific
characteristic handle.

BLE_WRITE_CHARAC_WITHOUT_RESP 0x01 Write GATT field with a specific characteris-
tic handle without response. This command
does not generate any event. All failures on
the server are ignored silently. For example,
if an error is generated in the remote GATT
server and the given value is not written into
database no error message will be reported
to the local GATT client. Note that this com-
mand cannot be used to write long data!

Table 33.14: Definition of WriteMode

Page 193 of 237

33 BLE Functions

33.22 BLECommand

This command can be used to set and request an connection.

int BLECommand
(

int CommandCode,
int Parameter

)

Parameters:

int CommandCode Mode parameter for a connection. See table CommandCode below.

int Parameter For more information, see the CommandCode table.

Return: The return value is specified in the CommandCode table.

BLE_CMD_SET_GATT_MTU 0 This command can be used to set the
maximum size of ATT Message Transfer
Units (MTU). If the given value is too large,
the system will select the maximal possible
value as the maximum ATT MTU. If maxi-
mum ATT MTU is larger than 23, MTU is
exchanged automatically after a Bluetooth
connection has been established.
-> Parameter Flag:
New MTU value. Range 23 to 250

BLE_CMD_REQUEST_RSSI 1 This command is used to verify the work-
ing communication between host and de-
vice. After this request has been issued,
the RSSI value can be called up with
BLEGetEnvironment(..).
-> Parameter Flag:
Not used.

BLE_CONN_STREAM_AVAILABLE 2 Communication in Streaming Mode:
GATT Server Mode:
Function return true if the GATT Server on
the reader is successfully connected, other-
wise it is false.
GATT Client Mode:
Flag = 0: Function return true if a connec-
tion is established, otherwise it is false.
Flag = 1: Function return true if a connec-
tion / discovering is established and notifi-
cation is set, otherwise it is false.

Page 194 of 237

33 BLE Functions

BLE_CMD_REQUEST_DTM_TEST_END 3 This command can be used to end a
transmitter or a receiver test. When
the command is processed by the
radio and the test has ended, a
BLE_EVENT_DTM_COMPLETED event is
triggered.
-> Parameter Flag:
Not used.

BLE_CMD_REQUEST_DISABLE_CONNECTION 4 This command can be used to stop a estab-
lished streaming connection.
-> Parameter Flag:
Not used.

BLE_CMD_ENABLE_MOBILE_BADGE_2_0 5 Enable "Mobile Badge 2.0" authentication
using SearchTag(..) function.
-> Parameter
Flag = 0: Read BLE State machine (IDLE
mode). If the operation was successful, the
return value is true, otherwise it is false.
Flag = 1: Set the ready state to exchange
data (discover mode is established). If the
operation was successful, the return value
is true, otherwise it is false.
Flag = 2: Read the Phone ID status. If
the Phone ID is received, the return value
is true, otherwise it is false.

BLE_CMD_REQUEST_RESULTCODE 6 This command requests the result code of
the last command sent to the BLE modul.
The complete errorlist can be requested by
the support department.
-> Parameter Flag:
Not used.

BLE_CMD_SYSTEM_SET_TX_POWER 6 This command can be used to set the global
maximum TX power for Bluetooth module
on the reader. The possible range is from 0
to the maximum value of 80 (8.0 dBm).
Please note: It is not allowed to set the
value more than 20 (2.0 dBm) for the TWN4
MultiTech 2 BLE desktop housing version.
The value above the limit falls under com-
plete integrator/user responsibility.
-> Parameter Flag:
The TX Power in 0.1 dBm steps. Example:
The value 10 is representing 1 dBm and the
value 55 is representing 5.5 dBm.

Table 33.15: Definition of CommandCode

Page 195 of 237

33 BLE Functions

33.23 BLESecurity

This function handles the security of a BLE connection.

Note: The default passkey is "123456" (set with every predefined BLEInit(Mode). Call f.e. function BLESe-
curity(BLE_SM_SET_PASSKEY,123456,0) for own values.

bool BLESecurity
(

int SMMode,
unsigned long Flag1,
unsigned long Flag2

)

Parameters:

int SMMode Mode parameter for different security modes. See table SMMode below.

unsigned long Flag1 For more information, see the SMMode table.

unsigned long Flag2 For more information, see the SMMode table.

Return: If the operation was successful, the return value is true, otherwise it is
false.

BLE_SM_BONDING_CONFIRM 0 This mode can be used for accepting or re-
jecting bonding request.
-> Parameter Flag1:
0 = Reject, 1 = Accept bonding request.
-> Parameter Flag2:
Not used.

Page 196 of 237

33 BLE Functions

BLE_SM_CONFIGURE 1 This mode can be used to configure secu-
rity requirements and I/O capabilities of the
system.
-> Parameter Flag1:
Security requirement bitmask.
Bit 0:
0: Allow bonding without MITM protection
1: Bonding requires MITM protection
Bit 1:
0: Allow encryption without bonding
1: Encryption requires bonding. Note that
this setting will also enable bonding.
Bit 2:
0: Allow bonding with legacy pairing
1: Secure connections only
Bit 3:
0: Bonding request does not need to be
confirmed
1: Bonding requests need to be confirmed.
Received bonding requests are notified with
BLE_EVENT_SM_CONFIRM_BONDING.
Bit 4 to 7: Reserved. Default value: 0x00
-> Parameter Flag2:
I/O Capabilities
0 = Display Only
1 = Display with Yes/No-buttons
2 = Keyboard Only
3 = No Input and No Output
4 = Display with Keyboard

BLE_SM_DELETE_BONDINGS 2 This mode can be used to delete all bonding
information from Persistent Store.
-> Parameter Flag1:
Not used.
-> Parameter Flag2:
Not used.

Page 197 of 237

33 BLE Functions

BLE_SM_STORE_BONDING_CONFIGURATION 3 This mode can be used to set maximum
allowed bonding count and bonding policy.
The default value is Flag1=1 for maximum
number of bondings supported and Flag2=1
for overwriting the oldest existing bonding.
-> Parameter Flag1:
Maximum allowed bonding count. Range: 1
to 14
-> Parameter Flag2:
Bonding policy. Values:
0: If database is full, new bonding attempts
will fail
1: New bonding will overwrite the oldest ex-
isting bonding
2: New bonding will overwrite longest time
ago used existing bonding

BLE_SM_SET_BONDABLE_MODE 4 This mode can be used to set whether the
device accepts new bondings or not.
-> Parameter Flag1:
Bondable mode. Values:
0: New bondings not accepted
1: Bondings allowed
-> Parameter Flag2:
Not used.

BLE_SM_LIST_ALL_BONDINGS 5 This mode can be used to list all bond-
ings stored in the bonding database.
Bondings are reported by using the
BLE_EVENT_SM_LIST_BONDING_ENTRY
event for each bonding entry. BLEGetAd-
dress() shows at each of this event
the MAC-Address in parameter Re-
moteAddress. The report is ended with
BLE_EVENT_SM_LIST_ALL_BONDINGS
_COMPLETE event. Recommended to
be used only for debugging purposes,
because reading from the Persistent Store
is relatively slow.
-> Parameter Flag1:
Not used.
-> Parameter Flag2:
Not used.

BLE_SM_ENTER_PASSKEY 10 This mode can be used to enter a passkey
after receiving a passkey request event.
-> Parameter Flag1:
Passkey. Valid range: 0-999999. Set -1 to
cancel pairing.
-> Parameter Flag2:
Not used.

Page 198 of 237

33 BLE Functions

BLE_SM_SET_PASSKEY 11 This mode can be used to enter a fixed
passkey.
-> Parameter Flag1:
Passkey. Valid range: 0-999999. Set -1 to
disable and start using random passkeys.
-> Parameter Flag2:
Not used.

BLE_SM_PASSKEY_CONFIRM 12 This mode can be used for accepting or re-
jecting reported confirm value.
-> Parameter Flag1:
Accept confirm value. Values:
0: Reject
1: Accept confirm value
-> Parameter Flag2:
Not used.

BLE_SM_INCREASE_SECURITY 20 This mode can be used to enhance the se-
curity of a connection to current security re-
quirements. On an unencrypted connec-
tion, this will encrypt the connection and will
also perform bonding if requested by both
devices. On an encrypted connection, this
will cause the connection re-encrypted.
-> Parameter Flag1:
Not used.
-> Parameter Flag2:
Not used.

Table 33.16: Definition of SMMode

33.24 BLESecuritySetOob

This function set the OOB data (out-of-band encryption data).

bool BLESecuritySetOob
(

int SMOOBMode,
const byte *OobData,
int DataLength

)

Parameters:

int SMOOBMode Mode parameter for different OOB modes. See table SMOOBMode below.

const byte *OobData OOB data to be written. For more information, see the SMOOBMode table.

int DataLength This parameter holds the length of OobData which shall be written. For more
information, see the SMOOBMode table.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 199 of 237

33 BLE Functions

BLE_SM_SET_OOB_DATA 0 This parameter can be used to set the
OOB data (out-of-band encryption data) for
legacy pairing for a device. The OOB
data may be, for example, a PIN code ex-
changed over an alternate path like NFC.
The device will not allow any other kind of
bonding if OOB data is set. The OOB data
cannot be set simultaneously with secure
connections OOB data.
To set OOB data, send a 16-byte array. To
clear OOB data, send a zero-length array.
The data length is 16 byte.

BLE_SM_SET_SC_REMOTE_OOB_DATA 1 This parameter can be used to set OOB
data and confirm values (out-of-band en-
cryption) received from the remote de-
vice for secure connections pairing. OOB
data must be enabled with BLESecurityUs-
eScOob(...) before setting the remote de-
vice OOB data.
To set OOB data, send a 32-byte array. The
first 16-bytes is the OOB data and the last
16-bytes the confirm value. To clear OOB
data, send a zero-length array.
The data length is 32 byte.

BLE_SET_MOBILE_BADGE_MASTERKEY 10 Special case: This parameter can be used
to set the 16 bytes MasterKey for "Mobile
Badge 2.0" authentication.

Table 33.17: Definition of SMOOBMode

33.25 BLESecurityUseScOob

This command can be used to enable the use of OOB data (out-of-band encryption data) for a device for
secure connections pairing. The enabling will genarate new OOB data and confirm values which can be
sent to the remote device. After enabling the secure connections OOB data, the remote devices OOB data
can be set with BLESecuritySetOob(BLE_SM_SET_SC_REMOTE_OOB_DATA, ...). Calling this function
will erase any set remote device OOB data and confirm values. The device will not allow any other kind
of bonding if OOB data is set. The secure connections OOB data cannot be enabled simultaneously with
legacy pairing OOB data.

bool BLESecurityUseScOob
(

int Enable,
byte *OobData,
int *Length,
int MaxLength

)

Page 200 of 237

33 BLE Functions

Parameters:

int Enable Enable OOB with secure connections pairing. Values:
0: disable
1: enable

byte *OobData Returned OOB data. 32-byte array. The first 16-bytes contain randomly
generated OOB data and the last 16-bytes confirm value.

int *Length This parameter contains the length of OOB data.

int MaxLength The max length of OOB data.

Return: If the operation was successful, the return value is true, otherwise it is
false.

33.26 BLESetStreamingMode

This function initialize the streaming mode for byte or block data transfer. The data are read from and
written to CHANNEL_BLE.

bool BLESetStreamingMode
(

int ConnMode,
int GattMode,
int TransferMode

)

Parameters:

int ConnMode Mode parameter for different connection modes. See table ConnMode be-
low.

int GattMode Mode parameter for different GATT modes. See table GattMode below.

int TransferMode Mode parameter for different transfer modes. See table TransferMode be-
low.

Return: If the operation was successful, the return value is true, otherwise it is
false.

BLE_STREAM_CONN_NONE 0 Streaming Mode is switched off. The "Se-
rial Event Handler" in the firmware is deac-
tivated.

BLE_STREAM_CONN_ADVERTISE 1 The reader is in Advertise mode and Data
Streaming is activated.

BLE_STREAM_CONN_DISCOVER 2 The reader is in Discover mode and Data
Streaming is activated.

Table 33.18: Definition of ConnMode

BLE_STREAM_GATT_SERVER 0 Streaming Mode is activated with GATT
Server on the reader.

Page 201 of 237

33 BLE Functions

BLE_STREAM_GATT_CLIENT 1 Streaming Mode is activated with GATT
Client on the reader.

Table 33.19: Definition of GattMode

BLE_STREAM_TRANSFER_BLOCKWISE 0 Streaming Mode is activated with trans-
fering blocks (over CHANNEL_BLE).
The max. block size per Write-
Bytes(CHANNEL_BLE,..) is 250 bytes.

BLE_STREAM_TRANSFER_STREAMWISE 1 Streaming Mode with activated transfering
as byte stream.

Table 33.20: Definition of TransferMode

33.27 BLESetStreamingUUID

This function set the UUIDs for the data streaming (see function BLESetStreamingMode(..)).

bool BLESetStreamingUUID(
const byte *ServiceUUID,
int ServiceUUIDLength,
const byte *CharacUUID,
int CharacUUIDLength

)

Parameters:

const byte *ServiceUUID 16-bit or 128-bit Service UUID of the GATT (Client or Server) for Streaming.

int ServiceUUIDLength Length of the Service UUID in bytes (e.g. 2 or 16 bytes).

const byte *CharacUUID 16-bit or 128-bit Characteristic UUID of the GATT (Client or Server) for
Streaming.

int CharacUUIDLength Length of the Characteristic UUID in bytes (e.g. 2 or 16 bytes).

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 202 of 237

34 Contact Card Operations

34 Contact Card Operations

34.1 Microprocessor Cards

This chapter handles the usage of ISO7816 compliant Integrated Circuit Cards such as ID-1 or SAM
(Secure Access Module) cards. The TWN4 ISO7816 API offers different system functions for covering
different imaginable scenarios. A typical communication flow with contact cards looks like this:

Query card slot status
⇓

Activate card
⇓

PPS and set communication parameters
⇓

Exchange APDUs
⇓

Deactivate card

34.1.1 Query Card Slot Status

This function shall be used to query information of the physical card slot status, e.g. to find out if a card is
inserted or not. The function returns the slot status in CCID compliant style, this means it return information
about slot status, error information and clock status. The internal state of the card is not changed. Please
note, depending on the used hardware (TWN4 Desktop or TWN4 SmartCard) the amount of retrievable
information differs.

bool ISO7816_GetSlotStatus(int Channel, TISO7816SlotStatus* SlotStatus);

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

TISO7816SlotStatus*
SlotStatus

The card slot status is returned by this parameter. See the definition of
TISO7816SlotStatus for meaning of each member.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 203 of 237

34 Contact Card Operations

Members Length
(Bits)

Description

TISO7816StatusReg bStatus 8 Slot status register compliant to CCID. See the definition of
TISO7816StatusReg for meaning of the different bit fields.

byte bError 8 Error code compliant to CCID.

byte bClockStatus 8 Clock status information compliant to CCID. Possible values
are:
ISO7816_CLOCKSTATUS_RUNNING,
ISO7816_CLOCKSTATUS_CLKSTPL,
ISO7816_CLOCKSTATUS_CLKSTPH,
ISO7816_CLOCKSTATUS_CLKSTPU.

Table 34.1: Definition of TISO7816SlotStatus

Members Length
(Bits)

Description

byte bmICCStatus 2 Physical status of the card slot. Possi-
ble values are: ISO7816_ICCPRESENTANDACTIVE,
ISO7816_ICCPRESENTANDINACTIVE and
ISO7816_NOICCPRESENT.

byte bmRFU 4 These bits are reserved for future use.

byte bmCommandStatus 2 Command status information compliant to CCID.

Table 34.2: Definition of TISO7816StatusReg

34.1.2 Card Activation

This function shall be used to activate and initialize communication with the card inserted in one of the
slots connected to the TWN4 reader. All communication parameters are reset to default. Depending on
the hardware platform, the reader shows different behaviour regarding reset-handling of the card: On
TWN4 Desktop, calling this function always leads to a warm reset, on TWN4 SmartCard, the first call
performs a cold reset and any subsequent function call leads to a warm reset until the card is deactivated.
The result of the entire operation is the receipt of the Answer To Reset (ATR) from the card. Based on
the content of the ATR, the user may decide how to further proceed with the card. Note that selection of
voltage level is only available for TWN4 SmartCard.

bool ISO7816_IccPowerOn
(
int Channel,
byte* ATR,
int* ATRByteCnt,
int MaxATRByteCnt,
byte bPowerSelect,
TISO7816StatusReg* bStatus,
byte* bError
);

Page 204 of 237

34 Contact Card Operations

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

byte* ATR After successful completion of this function, the buffer referred by this pa-
rameter holds the ATR which was read from the card. Take care for ade-
quate dimensioning.

int* ATRByteCnt After successful completion of this function, this parameter holds the number
of bytes, the ATR contains.

int MaxATRByteCnt This parameter holds the array-size of ATR in bytes.

byte bPowerSelect Specify the operating voltage level which shall be used for the card.
Valid values are ISO7816_POWERSELECT_AUTO, ISO7816_POWERSELECT_5V,
ISO7816_POWERSELECT_3V, or ISO7816_POWERSELECT_1V8, use one of these
predefined constants.

TISO7816StatusReg*
bStatus

The CCID compliant slot status register is returned by this parameter. See
the definition of TISO7816StatusReg for meaning of the different bit fields.

byte* bError The CCID compliant error code is returned by this parameter.

Return: If the operation was successful, the return value is true, otherwise it is
false.

34.1.3 Card Deactivation

This function shall be used to deactivate and power off the card. When this function was called on TWN4
SmartCard reader, a subsequent call of IccPowerOn() leads to a cold reset of the card.

bool ISO7816_IccPowerOff(int Channel, TISO7816SlotStatus* SlotStatus);

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

TISO7816SlotStatus*
SlotStatus

The card slot status is returned by this parameter. See the definition of
TISO7816SlotStatus for meaning of each member.

Return: If the operation was successful, the return value is true, otherwise it is
false.

34.1.4 Set Communication Settings

This function shall be used to assign new communication settings to the respective card slot. After call-
ing this function, the communication parameters which have been negotiated with the card during Pro-
tocol And Parameter Selection (PPS) become valid. For issuing a PPS, please refer to the function
ISO7816_Transceive. Specific communication parameters must be obtained from the ATR, for detailed
information refer to standard ISO7816-3.

bool ISO7816_SetCommSettings
(
int Channel,

Page 205 of 237

34 Contact Card Operations

const TISO7816CommSettings* CommSettings
);

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

const
TISO7816CommSettings*
CommSettings

The new communication settings are passed by this parameter. See the
definition of TISO7816CommSettings for meaning of each member.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Members Length
(Bits)

Description

byte Protocol 8 Specify the protocol to be used. Possible values are:
ISO7816_PROTOCOL_T0 and ISO7816_PROTOCOL_T1.

byte Freq 8 Specify the clock frequency which shall be ap-
plied to the card. Chose one of the pre-
defined constants ISO7816_FREQUENCY_1000000,
ISO7816_FREQUENCY_1250000, ISO7816_FREQUENCY_1875000,
ISO7816_FREQUENCY_2500000, ISO7816_FREQUENCY_3750000,
ISO7816_FREQUENCY_5000000, ISO7816_FREQUENCY_7500000
or ISO7816_FREQUENCY_15000000.

uint16_t F 16 Specify a non-ISO value for F.

uint16_t D 16 Specify a non-ISO value for D.

union TProtocolData
ProtocolData

56 See definition of TProtocolData for details.

Table 34.3: Definition of TISO7816CommSettings

Members Length
(Bits)

Description

TProtocolDataT0 T0 40 See definition of TProtocolDataT0 for details.

TProtocolDataT1 T1 56 See definition of TProtocolDataT1 for details.

Table 34.4: Definition of TProtocolData

Page 206 of 237

34 Contact Card Operations

Members Length
(Bits)

Description

byte bmFindexDindex 8 Bit 7-4: FI, Index into table 7 of ISO/IEC 7816-3:2006 select-
ing a clock rate conversion factor. Bit 3-0: DI, Index into table
8 of ISO/IEC 7816-3:2006 selecting a baud rate conversion
factor. This value shall be obtained from TA1 of the ATR.

byte bmTCCKST0 8 This value shall be set to 00h.

byte bGuardTimeT0 8 Extra Guardtime between two characters. Add 0 to 254 etu
to the normal guardtime of 12 etu. FFh is the same as 00h.
This value shall be obtained from TC1 of the ATR.

byte bWaitingIntegerT0 8 Waiting time between transmission of a command and re-
ception of the response. This value is specified in TC2 of the
ATR. If TC2 is not present, the default value is 10.

byte bClockStop 8 This value shall be set to 00h.

Table 34.5: Definition of TProtocolDataT0

Members Length
(Bits)

Description

byte bmFindexDindex 8 Bit 7-4: FI, Index into table 7 of ISO/IEC 7816-3:2006 select-
ing a clock rate conversion factor. Bit 3-0: DI, Index into table
8 of ISO/IEC 7816-3:2006 selecting a baud rate conversion
factor. This value shall be obtained from TA1 of the ATR.

byte bmTCCKST1 8 This value shall be set to 00h.

byte bGuardTimeT1 8 Extra Guardtime (0 to 254 etu between two characters). If
value is FFh, then guardtime is reduced by 1 etu. This value
shall be obtained from TC1 of the ATR.

byte bWaitingIntegerT1 8 Bit 7-4: BWI, values 0-9 valid. Bit 3-0: CWI, values 0-Fh
valid. This value is specified in the first TB for T=1 in the
ATR.

byte bClockStop 8 This value shall be set to 00h.

byte bIFSC 8 Size of negotiated IFSC in bytes. This value is specified in
the first TA for T=1 in the ATR.

byte bNadValue 8 This value shall be set to 00h.

Table 34.6: Definition of TProtocolDataT1

Page 207 of 237

34 Contact Card Operations

34.1.5 Transparent Data Transmission

This function shall be used for byte-wise communication with the card.

bool ISO7816_Transceive
(
int Channel,
const byte* TX,
int LenTX,
byte* RX,
int* LenRX,
int MaxRXByteCnt,
TISO7816StatusReg* bStatus,
byte* bError
);

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

const byte* TX This buffer holds the data which shall be transmitted to the card.

int LenTX This parameter specifies the data-length in bytes which shall be transmitted
to the card.

byte* RX This buffer holds the data which was read from the card. Take care for
adequate dimensioning.

int* LenRX After successful completion of this function, this parameter holds the number
of bytes read from the card.

int MaxRXByteCnt This parameter holds the array-size of RX in bytes.

TISO7816StatusReg*
bStatus

The CCID compliant slot status register is returned by this parameter. See
the definition of TISO7816StatusReg for meaning of the different bit fields.

byte* bError The CCID compliant error code is returned by this parameter.

Return: If the operation was successful, the return value is true, otherwise it is
false.

34.1.6 Exchange Of APDUs

This function shall be used for APDU exchange based on T=0/T=1 protocol according to ISO7816-3.

bool ISO7816_ExchangeAPDU
(
int Channel,
const TISO7816_ProtocolHeader* Header,
const byte* TXData,
int TXByteCnt,
byte* RXData,
int* RXByteCnt,
int MaxRXByteCnt,
uint16_t* StatusWord
);

Page 208 of 237

34 Contact Card Operations

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

const
TISO7816_ProtocolHeader
*Header

This parameter holds basic APDU information.

const byte* TXData This buffer holds the data field of the APDU.

int TXByteCnt This parameter specifies the data-length in bytes of the data-field.

byte* RXData This buffer holds the data-field of the received APDU.

int* RXByteCnt After successful completion of this function, this parameters holds the data-
field size of the received APDU.

int MaxRXByteCnt This parameter holds the array-size of RXData in bytes.

uint16_t* StatusWord This parameter holds the status word received from the card.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Members Length
(Bits)

Description

byte CLA 8 This member holds the CLA-value.

byte INS 8 This member holds the INS-code.

byte P1 8 This member holds the parameter P1.

byte P2 8 This member holds the parameter P2.

uint16_t Lc 16 This member holds Lc which defines the size of the following
data-field.

uint16_t Le 16 This member holds Le which defines the maximum expected
size of the response data-field.

struct
TISO7816_ProtocolHeaderFlags
Flags

8 This member holds additional APDU information.

Table 34.7: Definition of TISO7816_ProtocolHeader

Members Length
(Bits)

Description

byte LePresent 1 If set to true, Le is transmitted.

byte ExtendedAPDU 1 If set to true, this APDU is sent as Extended APDU.

byte RFU 6 Reserved for future use.

Table 34.8: Definition of TISO7816_ProtocolHeaderFlags

Page 209 of 237

34 Contact Card Operations

34.1.7 Examples

34.1.7.1 PPS Example

The following example shows how to make a PPS with an ISO7816 card.

bool ISO7816_PPS(int Channel, byte Protocol, byte* bmFindexDindex)
{

byte Cmd[4];
byte Res[4];
int TxByteCnt;
int RxByteCnt;
TISO7816StatusReg bStatus;
byte bError;

// PPS always starts with 0xFF
Cmd[0] = 0xFF;
// The second byte stores the desired protocol
Cmd[1] = Protocol & 0x0F;
// Is bmFindexDindex present?
if (bmFindexDindex != NULL)
{

// Yes, prepare the command accordingly
Cmd[1] |= 0x10;
Cmd[2] = *bmFindexDindex;
// Calculate the BCC over all command bytes
Cmd[3] = Cmd[0] ^ Cmd[1] ^ Cmd[2];
TxByteCnt = 4;

}
else
{

// FindexDindex is not present, calculate only BCC
Cmd[2] = Cmd[0] ^ Cmd[1];
TxByteCnt = 3;

}
// Send PPS request to the card, get response
if (!ISO7816_Transceive(Channel, Cmd, TxByteCnt, Res,

&RxByteCnt, sizeof(Res), &bStatus, &bError))
return false;

// We expect the card to echo the request in its response
if (RxByteCnt != TxByteCnt)

return false;
return memcmp(Cmd, Res, RxByteCnt) == 0;

}

34.1.7.2 Communication Example

The following example shows how to prepare a ISO7816 card for communication at T=1 protocol and
exchange APDUs.

byte ATR[32];
int ATRByteCnt;

TISO7816SlotStatus SlotStatus;
TProtocolDataT1 ProtocolDataT1;

Page 210 of 237

34 Contact Card Operations

TISO7816CommSettings CommSettings;

TISO7816_ProtocolHeader Header;
byte TXData[128];
byte RXData[128];
int RXByteCnt;
uint16_t SW12;

// We want to use T=1 protocol with the following non-default values
ProtocolDataT1.bmFindexDindex = 0x98;
ProtocolDataT1.bmTCCKST1 = 0;
ProtocolDataT1.bGuardTimeT1 = 0xFF;
ProtocolDataT1.bmWaitingIntegersT1 = 0x55;
ProtocolDataT1.bClockStop = 0;
ProtocolDataT1.bIFSC = 0xFE;
ProtocolDataT1.bNadValue = 0x00;

MainLoop:
while (true)
{

// Is a card inserted in CHANNEL_SC1?
if (!ISO7816_GetSlotStatus(CHANNEL_SC1, &SlotStatus))

goto MainLoop;
// Card slot empty?
if (SlotStatus.bStatus.bmICCStatus == ISO7816_NOICCPRESENT)

goto MainLoop;
// Perform activation of the card and receive ATR
if (!ISO7816_IccPowerOn

(
CHANNEL_SC1,
ATR,
&ATRByteCnt,
sizeof(ATR),
ISO7816_POWERSELECT_5V,
&SlotStatus.bStatus,
&SlotStatus.bError
))
goto MainLoop;

// We expect the card to be present and active
if (SlotStatus.bStatus.bmICCStatus != ISO7816_ICCPRESENTANDACTIVE)

goto MainLoop;
// Perform PPS for T=1 protocol
if (!ISO7816_PPS(CHANNEL_SC1, ISO7816_PROTOCOL_T1,

&ProtocolDataT1.bmFindexDindex))
goto MainLoop;

// Setup ISO7816 UART accordingly
CommSettings.Protocol = ISO7816_PROTOCOL_T1;
CommSettings.Freq = ISO7816_FREQUENCY_5000000;
CommSettings.F = 512;
CommSettings.D = 12;
CommSettings.ProtocolData.T1 = ProtocolDataT1;
if (!ISO7816_SetCommSettings(CHANNEL_SC1, &CommSettings))

goto MainLoop;
// Let’s prepare our APDU. We want to select the Masterfile (MF)
// of a PKI card by its SFI (0x3F00).
Header.CLA = 0x00;
Header.INS = 0xA4;
Header.P1 = 0x00;

Page 211 of 237

34 Contact Card Operations

Header.P2 = 0x00;
Header.Lc = 0x0002;
Header.Le = 0x0000;
Header.Flags.LePresent = true;
Header.Flags.ExtendedAPDU = false;
TXData[0] = 0x3F;
TXData[1] = 0x00;

// Exchange the APDU
if (!ISO7816_ExchangeAPDU(CHANNEL_SC1, &Header, TXData, Header.Lc,

RXData, &RXByteCnt, sizeof(RXData), &SW12))
goto MainLoop;

// Check status word of the received APDU
if (SW12 == 0x9000)
{

// Further APDUs may follow...
DoSomething();

}
}

34.2 SLE Memory Cards

This chapter shows how to use TWN4 with contact based memory cards such as SLE44xx or compatible
cards. In order to query the card slot insertion state, the function ISO7816_GetSlotStatus can be used.

34.2.1 Get ATR

Use this function to retrieve the ATR (Answer To Reset) from an inserted card.

bool SLE_GetATR(int Channel, byte* ATR);

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

byte* ATR The card’s ATR is returned by this buffer. The function always returns 4
bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

34.2.2 Read Main Memory

Use this function to read data from the main memory.

bool SLE_ReadMainMemory(int Channel, int Address, byte* Data, int ByteCnt);

Page 212 of 237

34 Contact Card Operations

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

int Address Specify the start address in memory for reading.

byte* Data This buffer holds the data read from the card. Take care for proper dimen-
sioning.

int ByteCnt Specify the number of bytes to be read.

Return: If the operation was successful, the return value is true, otherwise it is
false.

34.2.3 Write Main Memory

Use this function to write one byte of data to the main memory.

bool SLE_UpdateMainMemory(int Channel, int Address, byte Value);

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

int Address Specify the address in memory to be written.

byte Value Specify the data byte to be written.

Return: If the operation was successful, the return value is true, otherwise it is
false.

34.2.4 Read Security Memory

Use this function to read out the four bytes of Security Memory.

bool SLE_ReadSecurityMemory(int Channel, byte* SecMemData);

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

byte* SecMemData This buffer holds the Security Memory data read from the card. The function
always returns 4 bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

34.2.5 Write Security Memory

Use this function to write one byte of data to the Security Memory.

Page 213 of 237

34 Contact Card Operations

bool SLE_UpdateSecurityMemory(int Channel, int Address, byte SecMemData);

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

int Address Specify the address in Security Memory to be written.

byte SecMemData Specify the data byte to be written.

Return: If the operation was successful, the return value is true, otherwise it is
false.

34.2.6 Read Protection Memory

Use this function to read out the four bytes of Protection Memory.

bool SLE_ReadProtectionMemory(int Channel, byte* ProtMemData);

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

byte* ProtMemData This buffer holds the Protection Memory data read from the card. The func-
tion always returns 4 bytes.

Return: If the operation was successful, the return value is true, otherwise it is
false.

34.2.7 Write Protection Memory

Use this function to write one byte of data to the Protection Memory.

bool SLE_WriteProtectionMemory(int Channel, int Address, byte ProtMemData);

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

int Address Specify the address in Protection Memory to be written.

byte ProtMemData Specify the data byte to be written.

Return: If the operation was successful, the return value is true, otherwise it is
false.

34.2.8 Compare Verification Data

Use this function to transmit one byte of verification input to the card.

Page 214 of 237

34 Contact Card Operations

bool SLE_CompareVerificationData(int Channel, int Address, byte VerificationData);

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

int Address Specify the address of verification data byte.

byte VerificationData Specify the verification data byte to be transfered to the card.

Return: If the operation was successful, the return value is true, otherwise it is
false.

34.3 I2C Memory Cards

This chapter shows how to use TWN4 with contact based I2C memory cards. In order to query the card
slot insertion state, the function ISO7816_GetSlotStatus can be used.

34.3.1 Read Memory

Use this function to read data from the memory.

bool I2CCard_Read(int Channel, int Addr, byte* Data, int ByteCnt);

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

int Addr Specify the start address in memory for reading.

byte* Data This buffer holds the data read from the card. Take care for proper dimen-
sioning.

int ByteCnt Specify the number of bytes to be read.

Return: If the operation was successful, the return value is true, otherwise it is
false.

34.3.2 Write Memory

Use this function to write data to the memory.

bool I2CCard_Write(int Channel, int Addr, const byte* Data, int ByteCnt);

Page 215 of 237

34 Contact Card Operations

Parameters:

int Channel Specify a communication channel by this parameter. Valid values are
CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1, use one of these pre-
defined constants.

int Addr Specify the start address in memory for the write operation.

const byte* Data Specify data to be written.

int ByteCnt Specify the number of bytes to be written.

Return: If the operation was successful, the return value is true, otherwise it is
false.

Page 216 of 237

35 Cryptographic Operations

35 Cryptographic Operations

The cryptographic API incorporates methods for encryption/decryption of data, these are Triple-DES (Data
Encryption Standard) or AES (Advanced Encryption Standard). TDES is available in two versions that
support different key-lengths: 128 bit (TDES2K) and 192 bit (TDES3K).
The implementation of TDES is based on FIPS PUB 46-3. The method always operates on entire data
blocks of 8 bytes. The DES algorithm is passed three times for one TDES operation. In case of TDES2K,
the 128 bit key is hereby split into two parts: K1 and K2. In case of TDES3K, the 192 bit key is split into
three parts: K1, K2 and K3.
The implementation of AES is based on FIPS PUB 197. The method always operates on entire data blocks
of 16 bytes, the key-length is 128 bit.

DES Encrypt

K1
Plain Block

DES Decrypt

K2

DES Encrypt

K1
Ciphered Block

DES Decrypt

K1

DES Encrypt

K2

DES Decrypt

K1
Plain BlockCiphered Block

Figure 35.1: TDES2K Operation

DES Encrypt

K1
Plain Block

DES Decrypt

K2

DES Encrypt

K3
Ciphered Block

DES Decrypt

K3

DES Encrypt

K2

DES Decrypt

K1
Plain BlockCiphered Block

Figure 35.2: TDES3K Operation

The cryptographic API may be used to simply encrypt/decrypt a single block or to encrypt/decrypt a chain
of blocks using the CBC-method (Ciphered Block Chaining).
In CBC mode, every ciphering operation depends on the foregoing step, this is achieved by involving the

Page 217 of 237

35 Cryptographic Operations

so-called Init Vector IV. The first CBC-operation usually works with an Init Vector that is set to zero.
For encryption, a plain data block P is logically XOR-ed with this Init Vector before it comes to encryption.
The result is a ciphered block C which serves as Init Vector for the next operation. See the schematic
below for details:

Encryption

IV

Encryption

P1 P2

C1 C2

Encryption

Pn

...

Cn

Figure 35.3: CBC Enciphering scheme

If a ciphered block C is decrypted, the result is logically XOR-ed with the Init Vector. See the schematic
below for details:

Decryption

IV

Decryption

C1 C2

P1

Decryption

Cn

...

PnP2

Figure 35.4: CBC Deciphering scheme

Page 218 of 237

35 Cryptographic Operations

35.1 Initialization

The cryptographic API has to be initialized before it can be used. During initialization the key is passed to
the cryptographic method and assigned to a cryptographic environment. After initialization the functions for
encryption and decryption are set up for the desired cryptographic mode. If a cryptographic environment
is configured for CBC-operation, the internally managed Init Vector is automatically reset to zero.

void Crypto_Init
(
int CryptoEnv,
int CryptoMode,
const byte* Key,
int KeyByteCnt
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants.

int CryptoMode Specify the mode of cryptographic operation. Choose either
one of the predefined non-CBC constants CRYPTOMODE_3DES,
CRYPTOMODE_3K3DES, CRYPTOMODE_AES128 or one of the pre-defined
CBC constants CRYPTOMODE_CBC_DES, CRYPTOMODE_CBC_DFN_DES,
CRYPTOMODE_CBC_3DES, CRYPTOMODE_CBC_DFN_3DES, CRYPTOMODE_CBC_3K3DES,
CRYPTOMODE_CBC_AES128.

const byte* Key The key is passed by this parameter. Depending on the specified crypto
mode, the key-length is either 16 or 24 bytes.

int KeyByteCnt Specify the length of the key in bytes.

Return: This function has no return value.

35.2 Encrypt

Use this function to encrypt a plain block of data.

void Encrypt
(
int CryptoEnv,
const byte* PlainBlock,
byte* CipheredBlock,
int BlockByteCnt
);

Page 219 of 237

35 Cryptographic Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants.

const byte* PlainBlock Pointer to the array, that contains the plain data block to be encrypted.

byte* CipheredBlock Pointer to the array, that receives the encrypted data block. Take care for
proper dimensioning.

int BlockByteCnt Specify the number of bytes of a block.

Return: This function has no return value.

35.3 Decrypt

Use this function to decrypt an encrypted block of data.

void Decrypt
(
int CryptoEnv,
const byte* CipheredBlock,
byte* PlainBlock,
int BlockByteCnt
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants.

const byte*
CipheredBlock

Pointer to the array, that holds the encrypted data block.

const byte* PlainBlock Pointer to the array, that receives the decrypted data block. Take care for
proper dimensioning.

int BlockByteCnt Specify the number of bytes of a block.

Return: This function has no return value.

35.4 Reset Init Vector

Use this function to manually reset the internally managed Init Vector of a cryptographic environment to
zero.

void CBC_ResetInitVector
(
int CryptoEnv
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The valid range is
CRYPTO_ENV0 to CRYPTO_ENV3, use one of these predefined constants.

Return: This function has no return value.

Page 220 of 237

36 Storage Functions

36 Storage Functions

This chapter describes functions for accessing the storage of TWN4.

The storage memory is part of the internal flash of the main control unit (MCU) of TWN4. The gross
amount of this storage is 48kByte. Due to segmentation of the memory and further control mechanisms,
after deduction the memory size is 18kByte.

Before first use of the storage, the storage must be formatted. The appropriate system function for doing
so is FSFormat.

In order to gain access to the storage memory, the file system must be initialized and connected to the
internal flash. This can be achieved with the system function FSMount.

Why is a separate mount needed to gain access to the storage memory?

The reason for a separate mount is, that there could be a reasonable amount of time required in order to
start the file system. Background is, that depending on the state of the file system, additional activities must
be started, before access of the storage memory is possible. There is especially the situation, which can
occur, if last file operation were interrupted by a unplanned power fail. This can lead to the situation, that
the file system must be reset to the state, before the interrupted file operation was started. This clean-up
is done by function FSMount

The structure of the storage memory is similar to a none-hierarchical file system. Following points must be
known:

• Data is structured in files.

• Files are indicated by a file ID. The file ID is any 32 bit number.

• It is possible to iterate through the existing files and thus list the files stored in the memory.

• There is a maximum number of files, which can be stored in the memory. This maximum number is
16.

• In order to read from or write to files, appropriate system functions are available. In order to start a
file operation, the file must be opened for appropriate file operation. The maximum number of files,
which can be kept opened at a time is 4.

• File operations are kept atomic. This means: If a change to a file (some kind write operation) is
interrupted by a power fail, the file system returns to the state, where the change began.

36.1 Management Functions

36.1.1 FSMount

Before any access to files can be performed, the appropriate file system must be mounted. Following steps
are performed by function FSMount:

• Check, if the specified volume contains a valid file system.

Page 221 of 237

36 Storage Functions

• Check, if there is a not completed file operation.

• If applicable, unwind file system to the point where not completed file operation was started.

• Finally, create a logical link between volume and file system.

bool FSMount(int StorageID,int Mode)

Parameters:

int StorageID Specifies the volume, which should be mounted. Currently, there is one stor-
age available, the internal flash. The appropriate definition for this storage
is SID_INTERNALFLASH

int Mode Specifies the mode in which the volume is mounted. This can be
FS_MOUNT_NONE (equivalent to a unmount), FS_MOUNT_READONLY (no write
access to storage possible)or FS_MOUNT_READWRITE (full read/write access).

Return: If the operation was successful, the return value is true, otherwise it
is false. A concrete error code can be retrieved with system function
GetLastError.

36.1.2 FSFormat

This function prepares the storage memory of TWN4 for further file operations.

— WARNING — WARNING — WARNING —

All data, which is stored on the file system will be irrecoverable deleted by calling this function!

bool FSFormat(int StorageID,int MagicValue)

Parameters:

int StorageID Specifies the volume, which should be formatted.

int MagicValue In order to avoid accidantely format of a volume, an appropriate parameter
for MagicValue must be specified. There is a definition for this magic value,
which is FS_FORMATMAGICVALUE.

Return: If the operation was successful, the return value is true, otherwise it
is false. A concrete error code can be retrieved with system function
GetLastError.

36.2 File Functions

36.2.1 FSOpen

This function must be called in order to begin any read or write operation from/to a file.

Following definitions for the parameter mode are valid:

Page 222 of 237

36 Storage Functions

FS_READ Open a file for read access. If the file not exists, an error is generated. The
position of the read pointer is set to zero, thus to the start of the file.

FS_WRITE Open a file for write access. An empty file is created independently of if the
file already exists or not, thus content of an earlier version of that file will be
deleted.

FS_APPEND Open a file for write access. If the file does not exist, a new file is created. If
the file already exists, the file pointer is moved to the end of the file, which
means, that newly written data is appended to data of existing file.

Following further considerations:

• A file can be opened one time in mode FS_WRITE or FS_APPEND, but never, if it is already opened by
any other file operation.

• A file can be opened many times in mode FS_READ, but never, if it is already opened in mode
FS_WRITE or FS_APPEND by another file operation.

bool FSOpen(int FileEnv,int StorageID,uint32_t FileID,int Mode)

Parameters:

int FileEnv Specifies the environment to be used for the file operation. Up to four file
operations can be opened at a time. The appropriate defintions for these
environments are FILE_ENV0 - FILE_ENV3.

int StorageID Specifies the storage on which the file resides. Currently, this parameter can
be SID_INTERNALFLASH only.

uint32_t FileID Specifies the ID of a file. The file ID is a reduced version of file name and
be understood as such. File ID is an integer number from 1 to 232 − 1, thus
0x00000000 to 0xFFFFFFFF.

int Mode Specifies, how the file is accessed (see above).

Return: If the operation was successful, the return value is true, otherwise it
is false. A concrete error code can be retrieved with system function
GetLastError.

X

36.2.2 FSClose

This function is used to terminate a file operation. Several actions are taken, when this function is
called:

• Pending data is written to the storage system.

• If this is the last file being closed, the file system is finalized in terms, that the even loss of the power
will restore this now achieved state.

bool FSClose(int FileEnv)

Parameters:

int FileEnv Specifies the environment to be used for the file operation.

Return: If the operation was successful, the return value is true, otherwise it
is false. A concrete error code can be retrieved with system function
GetLastError.

Page 223 of 237

36 Storage Functions

36.2.3 FSCloseAll

This function is closing all opened file operations throughout all mounted storages. This function avoids
keeping track of opened file operations.

void FSCloseAll(void)

Parameters: None.

Return: None.

36.2.4 FSSeek

Read and write operations from/to a file are implemented via a file pointer, which references the point, from
which next data is read or where next data is written. With this function, the file pointer can be moved
throughout a file and furthermore in relation to a specific point of the file.

FS_POSABS Move file position in relation to the start of the file. This results in a move of
the file pointer to an absolute position.

FS_POSREL Move the file pointer in relation to the current position. This allows an easy
skip of a number of bytes of the file.

FS_POSEND Move the file pointer in relation to the end of the file. This allows to move to
the end of the file without knowledge and independent of the length of a file.

bool FSSeek(int FileEnv,int Origin,int Pos)

Parameters:

int FileEnv Specifies the environment to be used for the file operation.

int Origin Specifies the reference point, from which the new file position is calculated
(see above).

int Pos Specifies the number of bytes in relation to the reference point. A negative
value is treated as position before reference point, a positive value is treated
as position behind the reference point.

Return: If the operation was successful, the return value is true, otherwise it
is false. A concrete error code can be retrieved with system function
GetLastError.

36.2.5 FSTell

This function returns the position of the file pointer in relation to a reference point. Please note that in
consequence, specifying FS_POSREL as origin must always return the value zero.

bool FSTell(int FileEnv,int Origin,int *Pos)

Page 224 of 237

36 Storage Functions

Parameters:

int FileEnv Specifies the environment to be used for the file operation.

int Origin Specifies the reference point, under which the current position is calculated
(see function FSSeek).

int *Pos A pointer to an integer, which will receive the value of the position.

Return: If the operation was successful, the return value is true, otherwise it
is false. A concrete error code can be retrieved with system function
GetLastError.

36.2.6 FSReadBytes

Read bytes from a file, which has been opened in mode FS_READ before. Use function FSOpen to open the
file accordingly.

The function generates the error ERR_ENDOFFILE, if less than the requested number of bytes were read
from the file or if there are no more bytes left to be read from the file.

bool FSReadBytes(int FileEnv,void *Data,int ByteCount,int *BytesRead)

Parameters:

int FileEnv Specifies the environment to be used for the file operation.

void *Data Pointer to an array of bytes, which receives read data.

int ByteCount Number of bytes, which should be read from the file.

int *BytesRead Pointer to an integer, which receives the number of actually read bytes. The
received value is valid even if the function returns with an error.

Return: If the operation was successful, the return value is true, otherwise it
is false. A concrete error code can be retrieved with system function
GetLastError.

36.2.7 FSWriteBytes

Write bytes to a file, which has been opened in mode FS_WRITE or FS_APPEND before. Use function FSOpen
to open the file accordingly.

bool FSWriteBytes(int FileEnv,const void *Data,int ByteCount,int *BytesWritten)

Parameters:

int FileEnv Specifies the environment to be used for the file operation.

const void *Data Pointer to an array of bytes, which contains data to be written.

int ByteCount Number of bytes, which should be written to the file.

int *BytesWritten Pointer to an integer, which receives the number of actually written bytes.
The received value is valid even if the function returns with an error.

Return: If the operation was successful, the return value is true, otherwise it
is false. A concrete error code can be retrieved with system function
GetLastError.

Page 225 of 237

36 Storage Functions

36.3 Directory Functions

36.3.1 FSFindFirst

The functions FSFindFirst/FSFindNext implement the possibility to enumerate the files contained in a
files system. In order to begin enumeration of files the function FSFindFirst must be called.

The members of a directory entry are stored in a structure of type TFileInfot. The members of the
structure are:

ID The file ID.

Length The length of the file.

bool FSFindFirst(int StorageID,TFileInfo *pFileInfo)

Parameters:

int StorageID Storage ID of the file system, where files should be enumerated.

TFileInfo *pFileInfo Pointer to a structure of type TFileInfo which receives a directory entry.

Return: If the operation was successful, the return value is true, otherwise it is
false. If no directory entry was found the error code ERR_FILENOTFOUND is
generated. The concrete error code can be retrieved with system function
GetLastError.

36.3.2 FSFindNext

The functions FSFindFirst/FSFindNext implement the possibility to enumerate the files contained in a
files system. In order to continue enumeration, once first entry has been retrieved with function FSFindFirst,
the function FSFindNext must be called.

bool FSFindNext(TFileInfo *pFileInfo)

Parameters:

TFileInfo *pFileInfo Pointer to a structure of type TFileInfo which receives a directory entry.

Return: If the operation was successful, the return value is true, otherwise it is
false. If no directory entry was found the error code ERR_FILENOTFOUND is
generated. The concrete error code can be retrieved with system function
GetLastError.

36.3.3 FSDelete

Use function FSDelete to delete files from the file system. A file, which is currently opened can not be
deleted.

bool FSDelete(int StorageID,uint32_t FileID)

Page 226 of 237

36 Storage Functions

Parameters:

int StorageID Storage ID of the file in question.

uint32_t FileID File ID of the file to be deleted.

Return: If the operation was successful, the return value is true, otherwise it
is false. A concrete error code can be retrieved with system function
GetLastError.

36.3.4 FSRename

Use function FSRename to rename files on the file system.

bool FSRename(int StorageID,uint32_t OldFileID,uint32_t NewFileID)

Parameters:

int StorageID Storage ID of the file in question.

uint32_t OldFileID Current file ID of the file to be renamed.

uint32_t NewFileID Future file ID of the file to be renamed.

Return: If the operation was successful, the return value is true, otherwise it
is false. A concrete error code can be retrieved with system function
GetLastError.

36.4 Miscellaneous Functions

36.4.1 FSGetStorageInfo

Function FSGetStorageInfo allows to retrieve information regarding a storage.

bool FSGetStorageInfo(int StorageID,TStorageInfo *pStorageInfo)

Parameters:

int StorageID ID of the storage in question.

TStorageInfo
*pStorageInfo

Pointer to a structure of type TStorageInfo, which receives the requested
information.

Return: If the operation was successful, the return value is true, otherwise it
is false. A concrete error code can be retrieved with system function
GetLastError.

The structure TStorageInfo is defined as follows:

typedef struct
{

byte ID;
uint32_t Size;
uint32_t Free;

} TStorageInfo;

where:

Page 227 of 237

36 Storage Functions

byte ID ID of the storage in question.

uint32_t Size Size in bytes of the storage.

uint32_t Free Number of free bytes in the storage.

36.5 Examples

This is an example for a function, which reads a complete file from the file system. The file system must
have been mounted before with function FSMount.

bool ReadFile1(uint32_t FileID,byte *Data,int *FileLength,int MaxFileLength)
{

if (!FSOpen(FILE_ENV0,SID_INTERNALFLASH,FileID,FS_READ))
return false;

FSReadBytes(FILE_ENV0,Data,MaxFileLength,FileLength);
int LastError = GetLastError();
FSClose(FILE_ENV0);
if (LastError != ERR_NONE && LastError != ERR_ENDOFFILE)

return false;
// Function was successfully completed
return true;

}

Here is an example for a function, which reads a complete file from the file system but in portions of
256 bytes. This might be useful, if the implementation is actually done on a host, which is doing system
calls indirectly via TWN4 Simple Protocol. The file system must have been mounted before with function
FSMount.

bool ReadFile2(uint32_t FileID,byte *Data,int *Length,int ExpectedLength)
{

*Length = 0;
if (!FSOpen(FILE_ENV0,SID_INTERNALFLASH,FileID,FS_READ))

return false;
bool ReadSuccess;
int RemainingBytes = ExpectedLength;
do
{

if (RemainingBytes == 0)
{

FSClose(FILE_ENV0);
return true;

}
const int BlockSize = 256;
int BytesToRead = RemainingBytes;
if (BytesToRead > BlockSize)

BytesToRead = BlockSize;
int BytesRead;
ReadSuccess = FSReadBytes(FILE_ENV0,Data,BytesToRead,&BytesRead);
Data += BytesRead;
*Length += BytesRead;
RemainingBytes -= BytesRead;

}
while (ReadSuccess);
int LastError = GetLastError();
FSClose(FILE_ENV0);
if (LastError != ERR_NONE && LastError != ERR_ENDOFFILE)

Page 228 of 237

36 Storage Functions

return false;
// Function was successfully completed
return true;

}

Here is an example for a function, which writes a complete file to the file system in portions of 256 bytes.
This might be useful, if the implementation is actually done on a host, which is doing system calls indirectly
via TWN4 Simple Protocol. The file system must have been mounted before with function FSMount.

bool WriteFile(uint32_t FileID,byte *Data,int Length)
{

if (!FSOpen(FILE_ENV0,SID_INTERNALFLASH,FileID,FS_WRITE))
return false;

bool WriteSuccess;
int RemainingBytes = Length;
do
{

if (RemainingBytes == 0)
{

FSClose(FILE_ENV0);
return true;

}
const int BlockSize = 256;
int BytesToWrite = RemainingBytes;
if (BytesToWrite > BlockSize)

BytesToWrite = BlockSize;
int BytesWritten;
WriteSuccess = FSWriteBytes(FILE_ENV0,Data,BytesToWrite,&BytesWritten);
Data += BytesWritten;
RemainingBytes -= BytesWritten;

}
while (WriteSuccess);
int LastError = GetLastError();
FSClose(FILE_ENV0);
if (LastError != ERR_NONE)

return false;
// Function was successfully completed
return true;

}

Page 229 of 237

37 System Parameters

37 System Parameters

The TWN4 App-system provides methods of setting up paramaters before or during runtime of Apps.

• In order to set up parameters before the App is started, a so-called Manifest can be specified as part
of an App.

• In order to set up parameters during normal execution of an App there is the system function
SetParameters.

This section describes the specification of a Manifest and all available parameters. See chapter "System
Functions" for a description of function SetParameters.

37.1 TLV Format

Parameters for a Manifest or the system function SetParameters are specified in the TLV format. The
TLV format specifies a chain of parameters with variable type and length. This format must follow following
rules:

• Every entry (except the last entry) is a sequence of 3 items. The 3 items are ’Type’, ’Length’ and
’Value’.

• The name of the parameter is associated to ’Type’, the length of

• the value is associated to ’Length’ and the value itself is associated to ’Value’

• The TLV list must be terminated with an item consisting of just the type. This type must contain the
value TLV_END.

37.2 Manifest

The intention for specifying a Manifest as part of an App could be to avoid opening of communication
channels in order to further reduce current consumption. Another could be to modify behaviour of the USB
section of TWN4.

The specification of a Manifest is pretty simple:

Define an array of bytes with the key-name Manifest. This will point the firmware of TWN4 to the position
where the parameters of interest are stored. Here is an example:

Example:

// This sample demonstrates the specification of a Manifest:
const byte *Manifest =
{

OPEN_PORTS, 1, OPEN_PORT_USB_MSK, // Open USB channel only
TLV_END // End of TLV

};

Page 230 of 237

37 System Parameters

No further action is required.

Page 231 of 237

37 System Parameters

37.3 Available Parameters

Here is a list of all parameters, which are supported:

Type (Parameter) Length Value

TLV_END N/A N/A

OPEN_PORTS 1 Bitwise OR of one or more of the following definitions:

OPEN_PORT_USB_MSK

OPEN_PORT_COM1_MSK

OPEN_PORT_COM2_MSK

EXECUTE_APP 1 EXECUTE_APP_AUTO

EXECUTE_APP_ALWAYS

INDITAG_READMODE 1 INDITAG_READMODE_1

INDITAG_READMODE_2

COTAG_READMODE 1 COTAG_READMODE_HASH

COTAG_READMODE_1

COTAG_READMODE_2

COTAG_VERIFY 1 COTAG_VERIFY_OFF

COTAG_VERIFY_ON

HONEYTAG_READMODE 1 HONEYTAG_READMODE_HASH

HONEYTAG_READMODE_1

ICLASS_READMODE 1 ICLASS_READMODE_UID

ICLASS_READMODE_PAC

AT55_BITRATE 1 8 to 128 as multiple of 2

AT55_OPTIONS 1 One of the following definitions:

AT55_OPT_SEQUENCENONE

AT55_OPT_SEQUENCETERMINATOR

AT55_OPT_SEQUENCESTARTMARKER

CCID_MAXSLOTINDEX 1 Specify index of last logical CCID slot

HITAG1S_T0 1 Values from 14 to 40

HITAG1S_T1 1 Values from 14 to 40

HITAG1S_TGAP 1 Values from 2 to 14

HITAG2_T0 1 Values from 14 to 40

HITAG2_T1 1 Values from 14 to 40

HITAG2_TGAP 1 Values from 2 to 14

ISO14443_BITRATE_TX 1 One of the following possible bitrates:

ISO14443_BITRATE_106

ISO14443_BITRATE_212

ISO14443_BITRATE_424

ISO14443_BITRATE_848

Page 232 of 237

37 System Parameters

Continued from last page:

ISO14443_BITRATE_RX 1 One of the following possible bitrates:

ISO14443_BITRATE_106

ISO14443_BITRATE_212

ISO14443_BITRATE_424

ISO14443_BITRATE_848

USB_SUPPORTREMOTEWAKEUP 1 USB_SUPPORTREMOTEWAKEUP_OFF

USB_SUPPORTREMOTEWAKEUP_ON

EM4102_OPTIONS 1 Bitwise OR of one or more of the following definitions:

EM4102_OPTIONS_F64

EM4102_OPTIONS_F32

EM4150_OPTIONS 1 Bitwise OR of one or more of the following definitions:

EM4150_OPTIONS_F64

EM4150_OPTIONS_F40

USB_SERIALNUMBER 1 USB_SERIALNUMBER_OFF

USB_SERIALNUMBER_ON

USB_KEYBOARDREPEATRATE 1 Number of milliseconds per keyboard event

SEOS_TREATMENT 1 SEOS_TREATMENT_ICLASS

SEOS_TREATMENT_ISO14443A

SUPPORT_CONFIGCARD 1 Either

SUPPORT_CONFIGCARD_OFF

or bitwise OR of one or more of the following definitions:

SUPPORT_CONFIGCARD_ON

SUPPORT_UPGRADECARD_ON

ISO14443_3_TDX_CRCCONTROL 1 0x00 or bitwise OR of one or more of the following definitions:

ISO14443_3_TDX_CRCCTRL_TX

ISO14443_3_TDX_CRCCTRL_RX

ISO7816_CONTROL 2 0x0000 or bitwise OR of one or more of the following definitions:

ISO7816_HANDLE_ERROR_SIGNAL_ATR

ISO7816_TRANSMIT_ERROR_CNT

ISO7816_RECEIVE_ERROR_CNT

ISO7816_VOLTAGE_SYNC_CARDS

ISO7816_SUPPORT_EMVCO

PN5180_LPCD_THRESHOLD 1 Values from 0 to 255

PN5180_LPCD_SENSING_PERIOD 2 Values from 1 to 2690

Page 233 of 237

37 System Parameters

Continued from last page:

USB_KEYBOARDLAYOUT 1 Following keyboard layouts are supported:

USB_KEYBOARDLAYOUT_ENGLISH (default)

USB_KEYBOARDLAYOUT_GERMAN

USB_KEYBOARDLAYOUT_FRENCH

USB_KEYBOARDSENDALTCODES 1 Instead of sending the immediate scan code of a character, TWN4
sends the input by entering the corresponding ALT-code. Following
options are available:

USB_KEYBOARDSENDALTCODES_OFF (default)

USB_KEYBOARDSENDALTCODES_ON

ENABLE_WATCHDOG 1 Turn on/off the watchdog timer.

WATCHDOG_OFF (default)

WATCHDOG_ON

Page 234 of 237

38 System Errors

38 System Errors

Here is a list of all error codes, which are generated by the firmware of TWN4. The error codes can be
retrieved with function GetLastError.

In the current version of the firmware, storage functions (FS...) are generating such errors.

Error Code Description

ERR_NONE No error occured.

ERR_OUTOFMEMORY The excution of a function required more memory than was available.

ERR_ISALREADYINIT There was a try to initialize a system module, which already was initialized.

ERR_NOTINIT There was a try to use a function from a module, which is not initialized.

ERR_ISALREADYOPEN There was a try to open a system resource, which is already is open.

ERR_NOTOPEN There was a try to use a system resource, which must be opened before
usage.

ERR_RANGE A specified parameters exceeded the valid range of values.

ERR_PARAMETER A specified parameters is not in set of valid parameters.

ERR_UNKNOWNSTORAGEID A storage ID was specified, which is not known by the firmware.

ERR_WRONGINDEX A index was specified, which was out of the valid range.

ERR_FLASHERASE The erase of a section of the flash failed.

ERR_FLASHWRITE The write to the flash memory failed.

ERR_SECTORNOTFOUND A sector of the file system was not found.

ERR_STORAGEFULL All sectors of the file system are occupied.

ERR_STORAGEINVALID There is an error in the file system.

Page 235 of 237

38 System Errors

ERR_TRANSACTIONLIMIT The limit of changes in the file system is reached, which is possible
within one transactions.

ERR_UNKNOWNFS The file system on the specified storage is not supported by the current
firmware.

ERR_FILENOTFOUND The specified file was not found.

ERR_FILEALREADYEXISTS The specified file already exists.

ERR_ENDOFFILE The end of the file was reached. There is no more data to be read.
Note: This error code is generated even the system function returned
successful execution.

ERR_STORAGENOTFOUND The specified storage was not found, e.g. because it is not mounted.

ERR_STORAGEALREADYMOUNTED The specified storage is already mounted.

ERR_ACCESSDENIED The access to a file was denied, e.g. write access to a file in a storage,
which is mounted as read only.

ERR_FILECORRUPT The specified file is corrupt in terms of a corrupted file system.

ERR_INVALIDFILEENV The specified environment is invalid.

ERR_INVALIDFILEID The specified file ID is invalid.

ERR_RESOURCELIMIT The maximum number of available resources have bee occupied.

Please see file twn4.sys.h (which can be found in local directory Tools\sys\ of the developer pack) for
concrete numbers, which are behind the definitions.

Page 236 of 237

39 Runtime Library

39 Runtime Library

There is a couple of functions, which are not part of the firmware of TWN4. Instead, they are statically
linked to the App.

There are several intentions for such functions:

• Provide functions instead of having similar code in each App.

• Provide an API at a higher level to simplify writing Apps.

• Maintain a degree of compatibility to TWN3.

39.1 Timer Functions

Include file: apptools.h

There are three functions, which implement a simple API, which allows triggering events after a specified
time. The behaviour of the functions are similar to TWN3. Compared to TWN3, there is only one timer
available. Therefore no timer ID must be specified. These timer functions are implemented using system
function GetSysTicks.

39.1.1 StartTimer

Start the timer with a specified time.

void StartTimer(unsigned long Duration)

Parameters:

unsigned long Duration Time in milliseconds, till function TestTimer returns true.

Return: None.

39.1.2 StopTimer

Stop the timer, thus function TestTimer will never return true.

void StopTimer(void);

Parameters: None.

Return: None.

Page 237 of 237

39 Runtime Library

39.1.3 TestTimer

Test, if the timer reached the timeout which was programmed by function StartTimer.

bool TestTimer(void);

Parameters: None.

Return: If the timeout has been reached, the function returns true, otherwise, it
return false.

39.2 Host Communication

Include file: apptools.h

There are several function which implement a simplified interface for direct write to the host. The host is de-
fined to be a communication channel, where all communication takes place. This removes the requirement
to specify the communication channel every time when communication should take place.

For a more sophisticated kind of communication (binary, bidirectional), it is suggested to directly use the
I/O functions from the firmware.

39.2.1 SetHostChannel

Specify the channel, where communication should take place. By default, the channel is determined
by the connected communication cable, which is therefore either USB (TWN4 USB) or COM1 (TWN4
RS232).

void SetHostChannel(int Channel)

Parameters:

int Channel Specifies the communication channel to be used. This might
be CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2 or CHANNEL_I2C or
CHANNEL_NONE. If CHANNEL_NONE is specified, channel will be choosen de-
pending on connected communication cable.

Return: None.

39.2.2 HostTestByte

Use this function to check if there is a byte available in the input buffer of the host-channel.

bool HostTestByte(void)

Parameters: None.

Return: If there is a byte available, the return value is true, otherwise it is false.

39.2.3 HostReadByte

Use this function to read a byte from the input buffer of the host-channel. If there is no byte available, the
function blocks until there is one.

Page 238 of 237

39 Runtime Library

byte HostReadByte(void)

Parameters: None.

Return: The byte which was read from the input buffer.

39.2.4 HostTestChar

Test if a character is available from the host. The character can be read with function HostReadChar.

bool HostTestChar(void)

Parameters: None.

Return: true if at least one character arrived, otherwise false.

39.2.5 HostReadChar

Receive a character from the host. This is a blocking function. This means, it is waiting, till a character is
available.

char HostReadChar(void)

Parameters: None.

Return: The character, which was read from the host.

39.2.6 HostWriteByte

Use this function to send one byte to the host through the actually configured host-channel. If the output
buffer is completely occupied, the function blocks until there is enough space.

void HostWriteByte(byte Byte)

Parameters:

byte Byte The byte to be sent.

Return: None.

39.2.7 HostWriteChar

Send a character to the host. This is a blocking function. This means, it is waiting, till there is storage in
the output buffer, to transmit the character.

void HostWriteChar(char Char)

Parameters:

char Char The character to be sent to the host.

Return: None.

Page 239 of 237

39 Runtime Library

39.2.8 HostWriteString

Send a string to the host. The string must be terminated with a null character. The string is sent without
the null character.

void HostWriteString(const char *String)

Parameters:

const char *String Pointer to the string to be sent.

Return: None.

39.2.9 HostWriteRadix

Send a number to the host in ASCII format. The number is specified by an array of bytes containing the
binary data.

void HostWriteRadix(const byte *ID,int BitCnt,int DigitCnt,int Radix)

Parameters:

const byte *ID Pointer to the array of bytes.

int BitCnt Number of bits stored in the array.

int DigitCnt Specifies the minimum number of digits, the output should contain. If
DigitCnt is 0, then at least 1 digit is sent. If DigitCnt is greater than the
actual width of the number to be converted, then the number is preceded by
zeros.

int Radix Base for conversion from binary to ASCII. Use:
• 2 for binary conversion
• 8 for octal conversion
• 10 for decimal conversion
• 16 for hexadecimal conversion

Return: None.

39.2.10 HostWriteBin

Send a binary number to the host in ASCII format. The number is specified by an array of bytes containing
the binary data.

void HostWriteBin(const byte *ID,int BitCnt,int DigitCnt)

Parameters:

const byte *ID Pointer to the array of bytes.

int BitCnt Number of bits stored in the array.

DigitCnt Specifies the minimum number of digits, the output should contain. If
DigitCnt is 0, then at least 1 digit is sent. If DigitCnt is greater than the
actual width of the number to be converted, then the number is preceded by
zeros.

Return: None.

Page 240 of 237

39 Runtime Library

39.2.11 HostWriteDec

Send a decimal number to the host in ASCII format. The number is specified by an array of bytes containing
the binary data.

void HostWriteDec(const byte *ID,int BitCnt,int DigitCnt)

Parameters:

const byte *ID Pointer to the array of bytes.

int BitCnt Number of bits stored in the array.

DigitCnt Specifies the minimum number of digits, the output should contain. If
DigitCnt is 0, then at least 1 digit is sent. If DigitCnt is greater than the
actual width of the number to be converted, then the number is preceded by
zeros.

Return: None.

39.2.12 HostWriteHex

Send a hexadecimal number to the host in ASCII format. The number is specified by an array of bytes
containing the binary data.

void HostWriteHex(const byte *ID,int BitCnt,int DigitCnt)

Parameters:

const byte *ID Pointer to the array of bytes.

int BitCnt Number of bits stored in the array.

DigitCnt Specifies the minimum number of digits, the output should contain. If
DigitCnt is 0, then at least 1 digit is sent. If DigitCnt is greater than the
actual width of the number to be converted, then the number is preceded by
zeros.

Return: None.

39.2.13 HostWriteVersion

Send the firmware version to the host. This function is sending the result of function GetVersionString
to the host.

void HostWriteVersion(void)

Parameters: None.

Return: None.

39.3 Beep Functions

Include file: apptools.h

The beep functions implement a simplified API around the system function Beep.

Page 241 of 237

39 Runtime Library

39.3.1 SetVolume

Set the beeper volume. The default volume is 0.

void SetVolume(int NewVolume)

Parameters:

int NewVolume Specify the volume in percent from 0 to 100.

Return: None.

39.3.2 GetVolume

Read current volume.

int GetVolume(void);

Parameters: None.

Return: Current volume in arange from 0 to 100.

39.3.3 BeepLow

Perform a beep at a frequency of BEEP_FREQUENCY_LOW (2057 Hz) with a duration of 50 milliseconds.

void BeepLow(void)

Parameters: None.

Return: None.

39.3.4 BeepHigh

Perform a beep at a frequency of BEEP_FREQUENCY_HIGH (2400 Hz) with a duration of 50 milliseconds.
This is meant to be the standard signal for a successful operation, e.g. read of a transponder.

void BeepHigh(void)

Parameters: None.

Return: None.

39.4 Compatibility to TWN3

Include file: apptools.h

Currently, there is one function for maintaining 100% backward compatibility to TWN3 applications.

Page 242 of 237

39 Runtime Library

39.4.1 ConvertTagTypeToTWN3

This functions converts a tag type from the TWN4 system to TWN3 system. Due to the fact that TWN4
covers a broader range of transponders, the situation might occure, that a conversion is not possible.
Under that circumstance the TWN3 value TAGTYPE_NONE (0) is returned.

int ConvertTagTypeToTWN3(int TagTypeTWN4)

Parameters:

int TagTypeTWN4 Tag type as returned e.g. by TWN4 system function SearchTag.

Return: Corresponding tag type as it would be returned by TWN3 system function
TagSearch.

39.5 Simple Protocol

Include file: prs.h

The Simple Protocol is the standard protocol for building solutions, which need operation of TWN4, which
is controlled by the host.

There is a set of functions and definitions, which allow to implement an App, which runs the Simple Proto-
col. There are some options, which have influence on some details of the Simple Protocol (ASCII/binary
mode, CRC). Furthermore, these functions allow to specify custom communication channel and configure
the host interface before starting the communication.

The simplest App for using these functions could be written as follows:

#include <twn4.sys.h>
#include <prs.h>

int main(void)
{

InitSimpleProtocol(GetHostChannel(),PRS_COMM_MODE_ASCII | PRS_COMM_CRC_OFF);
while (true)
{

if (SimpleProtoTestCommand())
{

SimpleProtoExecuteCommand();
SimpleProtoSendResponse();

}
}

}

39.5.1 SimpleProtoInit

Use this function to prepare the Simple Protocol for operation. Before starting this function, it is possible
to e.g. prepare a serial port with appropriate communication parameters.

bool SimpleProtoInit(int Channel,int Mode)

Page 243 of 237

39 Runtime Library

Parameters:

int Channel This parameter specifies the communication channel for the Simple Proto-
col. This can be one the channels as defined by the system I/O functions.

int Mode This parameter specified the mode of communication. It is a or-operation,
which combines mode (PRS_COMM_MODE_ASCII or PRS_COMM_MODE_BINARY
and CRC (COMM_CRC_OFF or PRS_COMM_CRC_ON).

Return: This functions return true, if initialization was successful. Otherwise it re-
turns false.

39.5.2 SimpleProtoTestCommand

This is a none-blocking function, which polls for the availabilty of a command from the host. If the function
returns true, a command is available. The command is stored in the global variables SimpleProtoMessage
and SimpleProtoMessageLength.

bool SimpleProtoTestCommand(void)

Parameters: None.

Return: This functions return true, if a command became available. Otherwise it
returns false.

39.5.3 SimpleProtoExecuteCommand

This function executes a command stored in the global variables SimpleProtoMessage and SimpleProtoMessageLength.
After execution of the command, these variables contain the response to be sent to the host.

void SimpleProtoExecuteCommand(void)

Parameters: None.

Return: None.

39.5.4 SimpleProtoSendResponse

This function sends a response stored in the global variables SimpleProtoMessage and SimpleProtoMessageLength
to the host.

void SimpleProtoSendResponse(void)

Parameters: None.

Return: None.

Page 244 of 237

40 Compatibility of TWN4 MultiTech Mini Reader

40 Compatibility of TWN4 MultiTech Mini Reader

Due to reduced functionality of TWN4 MultiTech Mini Reader, several API functions are not available. If an
API function is called, which is not supported by TWN4 MultiTech Mini Reader the device stops execution
of the App and enters exception state (diagnostic LED is flashing three times).

API Supported Remark

System Functions Yes

I/O Functions Yes COM2 is not supported

Memory Functions Yes

Peripheral Functions Yes Support of GPIO0 to GPIO3 only, Beep is doing delay
only

Conversion Functions Yes

I2C Functions No

RF Functions Yes

HITAG 1 and HITAG S Functions No

HITAG 2 Functions No

EM4x50 Functions No

AT55xx Functions No

TILF (TIRIS) Functions No

LEGIC Functions No

MIFARE Classic Functions Yes

MIFARE Ultralight (-C) Functions Yes

ISO15693 Functions Yes

Cryptographic Functions Yes

DESFire Functions Yes

Contact Card Functions Yes SAM1 only

iCLASS Functions Yes

ISO14443 Functions Yes

NFC SNEP Functions Yes

System Parameters Yes

Runtime Library Yes

Page 245 of 237

41 Disclaimer

41 Disclaimer

ELATEC reserves the right to change any information or data in this document without prior notice. The
distribution and the update of this document is not controlled. ELATEC declines all responsibility for the
use of product with any other specifications but the ones mentioned above. Any additional requirement for
a specific custom application has to be validated by the customer himself at his own responsibility. Where
application information is given, it is only advisory and does not form part of the specification.

All referenced brands, product names, service names and trademarks mentioned in this document are the
property of their respective owners.

Page 246 of 237

	1 Definitions and Function Prototypes
	2 System Functions
	2.1 SysCall
	2.2 Reset
	2.3 StartBootloader
	2.4 GetSysTicks
	2.5 GetVersionString
	2.6 GetUSBType
	2.7 GetDeviceType
	2.8 Sleep
	2.9 GetDeviceUID
	2.10 SetParameters
	2.11 GetLastError

	3 Interrupt System
	3.1 SetInterruptHandler
	3.2 GPIOConfigureInterrupt

	4 I/O Functions
	4.1 Configuration
	4.1.1 Set COM-Port Parameters
	4.1.2 Get USB Device State
	4.1.3 Get Host Channel

	4.2 Miscellaneous Functions
	4.2.1 Wake Up Host

	4.3 Data I/O
	4.3.1 Query I/O Buffer Size
	4.3.2 Get I/O Buffer Byte Count
	4.3.3 Test Empty
	4.3.4 Test Full
	4.3.5 Send Byte
	4.3.6 Send Multiple Bytes
	4.3.7 Read Byte
	4.3.8 Read Multiple Bytes

	5 Memory Functions
	5.1 Byte Operations
	5.1.1 Compare Bytes
	5.1.2 Copy Bytes
	5.1.3 Fill Bytes
	5.1.4 Swap Bytes

	5.2 Bit Operations
	5.2.1 Read Bit
	5.2.2 Write Bit
	5.2.3 Copy Bit
	5.2.4 Compare Bits
	5.2.5 Copy Bits
	5.2.6 Fill Bits
	5.2.7 Swap Bits
	5.2.8 Count Bits

	6 Peripheral Functions
	6.1 General Purpose Inputs/Outputs (GPIOs)
	6.1.1 Configuration
	6.1.1.1 Outputs
	6.1.1.2 Inputs

	6.1.2 Basic Port Functions
	6.1.2.1 Set GPIOs to Logical Level
	6.1.2.2 Toggle GPIOs
	6.1.2.3 Waveform Generation
	6.1.2.4 Read GPIOs

	6.1.3 Higher Level Port Functions
	6.1.3.1 Send Data in Wiegand Format
	6.1.3.2 Send Data in Omron Format

	6.2 Beeper
	6.2.1 Duration controlled by function
	6.2.2 Duration controlled by App

	6.3 LEDs
	6.3.1 General Purpose LED Functions
	6.3.1.1 Initialization
	6.3.1.2 Set LEDs On/Off
	6.3.1.3 Toggle LEDs
	6.3.1.4 Blink LEDs

	6.3.2 Diagnostic LED
	6.3.2.1 Set Diagnostic LED On/Off
	6.3.2.2 Toggle Diagnostic LED
	6.3.2.3 Get LED State

	7 Conversion Functions
	7.1 Hexadecimal ASCII to Binary
	7.1.1 Scan Hexadecimal Character
	7.1.2 Scan Hexadecimal String

	7.2 Binary to Hexadecimal ASCII

	8 I2C Functions
	8.1 Initialization/Deinitialization
	8.1.1 I2CInit
	8.1.2 I2CDeInit
	8.1.3 Examples

	8.2 Communication (Master)
	8.2.1 I2CMasterStart
	8.2.2 I2CMasterStop
	8.2.3 I2CMasterTransmitByte
	8.2.4 I2CMasterReceiveByte
	8.2.5 I2CMasterBeginWrite
	8.2.6 I2CMasterBeginRead
	8.2.7 I2CMasterSetAck
	8.2.8 Examples

	8.3 Communication (Slave)
	8.3.1 Slave to Master
	8.3.2 Master to Slave
	8.3.3 Examples

	9 SPI Functions
	9.1 Slave Mode
	9.1.1 Timing
	9.1.2 Communication Protocol
	9.1.2.1 Master to Slave
	9.1.2.2 Slave to Master
	9.1.2.3 Example of a SPI Host Implementation

	9.2 Initialization/Deinitialization
	9.2.1 SPIInit
	9.2.2 SPIDeInit

	9.3 Communication
	9.3.1 SPIMasterBeginTransfer
	9.3.2 SPIMasterEndTransfer
	9.3.3 SPITransceive
	9.3.4 SPITransmit
	9.3.5 SPIReceive

	9.4 Examples

	10 RF Functions
	10.1 SearchTag
	10.2 SetRFOff
	10.3 SetTagTypes
	10.3.1 Supported Types of LF Tags (125kHz-134.2kHz)
	10.3.2 Supported Types of HF Tags (13.56MHz, Bluetooth)

	10.4 GetTagTypes
	10.5 GetSupportedTagTypes

	11 EM4x02-Specific Transponder Operations
	11.1 Function
	11.1.1 EM4102_GetTagInfo

	12 HITAG1- and HITAGS-Specific Transponder Operations
	12.1 Read/Write Data
	12.1.1 Hitag1S_ReadPage
	12.1.2 Hitag1S_WritePage
	12.1.3 Hitag1S_ReadBlock
	12.1.4 Hitag1S_WriteBlock

	12.2 Hitag1S_Halt

	13 HITAG2-Specific Transponder Operations
	13.1 Read/Write Data
	13.1.1 Hitag2_ReadPage
	13.1.2 Hitag2_WritePage
	13.1.3 Hitag2_SetPassword

	13.2 Hitag2_Halt

	14 EM4x50-Specific Transponder Operations
	14.1 Functions
	14.1.1 EM4150_Login
	14.1.2 EM4150_ReadWord
	14.1.3 EM4150_WriteWord
	14.1.4 EM4150_WritePassword
	14.1.5 EM4150_GetTagInfo

	15 EM4305-Specific Transponder Operations
	15.1 Functions
	15.1.1 EM4305_Begin
	15.1.2 EM4305_Read
	15.1.3 EM4305_Write
	15.1.4 EM4305_Login
	15.1.5 EM4305_Protect
	15.1.6 EM4305_Disable

	16 AT55xx-Specific Transponder Operations
	16.1 Control Functions
	16.1.1 AT55_Begin

	16.2 Read Data
	16.2.1 AT55_ReadBlock
	16.2.2 AT55_ReadBlockProtected

	16.3 Write Data
	16.3.1 AT55_WriteBlock
	16.3.2 AT55_WriteBlockProtected
	16.3.3 AT55_WriteBlockAndLock
	16.3.4 AT55_WriteBlockProtectedAndLock

	17 TILF (TIRIS) Functions
	17.1 Search Function
	17.1.1 TILF_SearchTag

	17.2 Single-Page Read/Write Function
	17.2.1 TILF_ChargeOnlyRead
	17.2.2 TILF_ChargeOnlyReadLo
	17.2.3 TILF_SPProgramPage
	17.2.4 TILF_SPProgramPageLo

	17.3 Multi-Page Read/Write Function
	17.3.1 TILF_MPGeneralReadPage
	17.3.2 TILF_MPSelectiveReadPage
	17.3.3 TILF_MPProgramPage
	17.3.4 TILF_MPSelectiveProgramPage
	17.3.5 TILF_MPLockPage
	17.3.6 TILF_MPSelectiveLockPage
	17.3.7 TILF_MPGeneralReadPageLo
	17.3.8 TILF_MPSelectiveReadPageLo
	17.3.9 TILF_MPProgramPageLo
	17.3.10 TILF_MPSelectiveProgramPageLo
	17.3.11 TILF_MPLockPageLo
	17.3.12 TILF_MPSelectiveLockPageLo

	17.4 Multi-Usage Read/Write Function
	17.4.1 TILF_MUGeneralReadPage
	17.4.2 TILF_MUSelectiveReadPage
	17.4.3 TILF_MUSpecialReadPage
	17.4.4 TILF_MUProgramPage
	17.4.5 TILF_MUSelectiveProgramPage
	17.4.6 TILF_MUSpecialProgramPage
	17.4.7 TILF_MULockPage
	17.4.8 TILF_MUSelectiveLockPage
	17.4.9 TILF_MUSpecialLockPage

	18 ISO14443 Transponder Operations
	18.1 ISO14443A
	18.1.1 Get ATQA
	18.1.2 Get SAK
	18.1.3 Get ATS

	18.2 ISO14443B
	18.2.1 Get ATQB
	18.2.2 Get Answer to ATTRIB

	18.3 Check Presence
	18.4 ISO14443-3 Transparent Data Exchange
	18.5 ISO14443-4 Transparent Data Exchange
	18.6 Multiple Tag Handling
	18.6.1 Search for Transponders
	18.6.2 Select Transponder

	19 MIFARE Classic Specific Transponder Operations
	19.1 Login
	19.2 Read/Write Data
	19.2.1 Read Data Block
	19.2.2 Write Data Block

	19.3 Handling of Value Blocks
	19.3.1 Read Value Block
	19.3.2 Write Value Block
	19.3.3 Increment Value Block
	19.3.4 Decrement Value Block
	19.3.5 Copy Value Block

	20 MIFARE Plus Specific Transponder Operations
	20.1 Personalisation
	20.1.1 Write Personalisation
	20.1.2 Commit Personalisation

	20.2 Authenticate AES
	20.3 Security Level 3
	20.3.1 Read/Write Data
	20.3.1.1 Read Data Block
	20.3.1.2 Write Data Block

	20.3.2 Handling of Value Blocks
	20.3.2.1 Read Value Block
	20.3.2.2 Write Value Block
	20.3.2.3 Increment Value Block
	20.3.2.4 Decrement Value Block
	20.3.2.5 Copy Value Block

	21 MIFARE Ultralight/Ultralight C/Ultralight EV1 Specific Transponder Operations
	21.1 Authentication (Ultralight C only)
	21.1.1 Authentication with given Key
	21.1.2 Authentication using SAM Card

	21.2 Write Key from SAM to Transponder Key Storage Area
	21.3 Read/Write Data
	21.3.1 Read Page
	21.3.2 Write Page

	21.4 Mifare Ultralight EV1
	21.4.1 Fast Read
	21.4.2 Increment Counter
	21.4.3 Read Counter
	21.4.4 Read ECC Signature
	21.4.5 Get Transponder Information
	21.4.6 Password Authentication
	21.4.7 Check Tearing Event

	22 NTAG Specific Transponder Operations
	22.1 Read/Write Data
	22.1.1 Read Page
	22.1.2 Write Page
	22.1.3 Fast Read

	22.2 Miscellaneous functions
	22.2.1 Read Counter
	22.2.2 Read ECC Signature
	22.2.3 Get Transponder Information
	22.2.4 Password Authentication
	22.2.5 Select Sector

	23 DESFire Specific Transponder Operations
	23.1 Security Related Operations
	23.1.1 Authenticate
	23.1.2 Get Key Version
	23.1.3 Get Key Settings
	23.1.4 Change Key Settings
	23.1.5 Change Key

	23.2 Transponder Related Operations
	23.2.1 Create Application
	23.2.2 Delete Application
	23.2.3 Get Application IDs
	23.2.4 Select Application
	23.2.5 Format Transponder
	23.2.6 Get Transponder Information
	23.2.7 Get Available Memory Space
	23.2.8 Get Card UID
	23.2.9 Set Transponder Configuration
	23.2.9.1 Disable Format Tag
	23.2.9.2 Enable Random ID
	23.2.9.3 Set Default Key
	23.2.9.4 Set User-defined Answer To Select (ATS)

	23.3 Application Related Operations
	23.3.1 Create File
	23.3.2 Delete File
	23.3.3 Get File IDs
	23.3.4 Get File Settings
	23.3.5 Change File Settings

	23.4 File Related Operations
	23.4.1 Data Files
	23.4.1.1 Read Data
	23.4.1.2 Write Data

	23.4.2 Value Files
	23.4.2.1 Get Value
	23.4.2.2 Debit
	23.4.2.3 Credit
	23.4.2.4 Limited Credit

	23.4.3 Record Files
	23.4.3.1 Read Records
	23.4.3.2 Write Record
	23.4.3.3 Clear Record File

	23.4.4 Commit Transaction
	23.4.5 Abort Transaction

	24 SAM AV1/AV2
	24.1 Host Authentication
	24.2 Query Key Entry

	25 ISO15693 Specific Transponder Operations
	25.1 Generic ISO15693 Command
	25.1.1 Example of creating a Standard ISO15693 Command

	25.2 Gather Tag Specific Information
	25.2.1 Get System Information
	25.2.2 Get Tag Type
	25.2.2.1 Get Tag Type From UID
	25.2.2.2 Get Tag Type From System Information

	25.3 Read/Write Data
	25.3.1 Read Single Block
	25.3.2 Write Single Block

	26 LEGIC-Specific Functions
	26.1 Direct Access of LEGIC Chip
	26.1.1 SM4X00_GenericRaw
	26.1.2 SM4X00_Generic
	26.1.3 SM4X00_StartBootloader
	26.1.4 SM4X00_EraseFlash
	26.1.5 SM4X00_ProgramBlock

	27 iCLASS Specific Transponder Operations
	27.1 Read PAC Bits
	27.1.1 Example

	27.2 Select Page
	27.3 Authenticate
	27.4 Read Data Block
	27.5 Write Data Block

	28 FeliCa
	28.1 Polling
	28.2 Request System Code
	28.3 Request Service
	28.4 Read Without Encryption
	28.5 Write Without Encryption
	28.6 Transparent Data Exchange

	29 Topaz Specific Transponder Operations
	29.1 Read UID
	29.2 Read Data
	29.2.1 Read Single Byte
	29.2.2 Read All Transponder Data

	29.3 Write Data
	29.3.1 Write Single Byte With Erase
	29.3.2 Write Single Byte Without Erase

	30 CTS Specific Transponder Operations
	30.1 Read Block Data
	30.2 Write Block Data
	30.3 Update Block Data

	31 SRX Specific Transponder Operations
	31.1 Read Block Data
	31.2 Write Block Data

	32 Simple NDEF Exchange Protocol (SNEP)
	32.1 Initialize SNEP Service
	32.2 Get Connection State
	32.3 Query Message FIFO
	32.4 Transmit NDEF Message
	32.4.1 Begin Message
	32.4.2 Send Message Fragment
	32.4.3 Example

	32.5 Receive NDEF Message
	32.5.1 Test Message
	32.5.2 Receive Message Fragment
	32.5.3 Example

	33 BLE Functions
	33.1 GATT Server Definition
	33.2 BLEPresetConfig
	33.3 BLEPresetUserData
	33.4 BLEInit
	33.5 BLECheckEvent
	33.6 BLEGetAddress
	33.7 BLEGetVersion
	33.8 BLEGetEnvironment
	33.9 BLEGetGattServerAttributeValue
	33.10 BLESetGattServerAttributeValue
	33.11 BLERequestRssi
	33.12 BLERequestEndpointClose
	33.13 BLEGetGattServerCharacteristicStatus
	33.14 BLEFindGattServerAttribute
	33.15 BLEDiscover
	33.16 BLECheckDiscoveredString
	33.17 BLEConnectToDevice
	33.18 BLEDisconnectFromDevice
	33.19 BLEGattGetAttribute
	33.20 BLEGattGetValue
	33.21 BLEGattSetValue
	33.22 BLECommand
	33.23 BLESecurity
	33.24 BLESecuritySetOob
	33.25 BLESecurityUseScOob
	33.26 BLESetStreamingMode
	33.27 BLESetStreamingUUID

	34 Contact Card Operations
	34.1 Microprocessor Cards
	34.1.1 Query Card Slot Status
	34.1.2 Card Activation
	34.1.3 Card Deactivation
	34.1.4 Set Communication Settings
	34.1.5 Transparent Data Transmission
	34.1.6 Exchange Of APDUs
	34.1.7 Examples
	34.1.7.1 PPS Example
	34.1.7.2 Communication Example

	34.2 SLE Memory Cards
	34.2.1 Get ATR
	34.2.2 Read Main Memory
	34.2.3 Write Main Memory
	34.2.4 Read Security Memory
	34.2.5 Write Security Memory
	34.2.6 Read Protection Memory
	34.2.7 Write Protection Memory
	34.2.8 Compare Verification Data

	34.3 I2C Memory Cards
	34.3.1 Read Memory
	34.3.2 Write Memory

	35 Cryptographic Operations
	35.1 Initialization
	35.2 Encrypt
	35.3 Decrypt
	35.4 Reset Init Vector

	36 Storage Functions
	36.1 Management Functions
	36.1.1 FSMount
	36.1.2 FSFormat

	36.2 File Functions
	36.2.1 FSOpen
	36.2.2 FSClose
	36.2.3 FSCloseAll
	36.2.4 FSSeek
	36.2.5 FSTell
	36.2.6 FSReadBytes
	36.2.7 FSWriteBytes

	36.3 Directory Functions
	36.3.1 FSFindFirst
	36.3.2 FSFindNext
	36.3.3 FSDelete
	36.3.4 FSRename

	36.4 Miscellaneous Functions
	36.4.1 FSGetStorageInfo

	36.5 Examples

	37 System Parameters
	37.1 TLV Format
	37.2 Manifest
	37.3 Available Parameters

	38 System Errors
	39 Runtime Library
	39.1 Timer Functions
	39.1.1 StartTimer
	39.1.2 StopTimer
	39.1.3 TestTimer

	39.2 Host Communication
	39.2.1 SetHostChannel
	39.2.2 HostTestByte
	39.2.3 HostReadByte
	39.2.4 HostTestChar
	39.2.5 HostReadChar
	39.2.6 HostWriteByte
	39.2.7 HostWriteChar
	39.2.8 HostWriteString
	39.2.9 HostWriteRadix
	39.2.10 HostWriteBin
	39.2.11 HostWriteDec
	39.2.12 HostWriteHex
	39.2.13 HostWriteVersion

	39.3 Beep Functions
	39.3.1 SetVolume
	39.3.2 GetVolume
	39.3.3 BeepLow
	39.3.4 BeepHigh

	39.4 Compatibility to TWN3
	39.4.1 ConvertTagTypeToTWN3

	39.5 Simple Protocol
	39.5.1 SimpleProtoInit
	39.5.2 SimpleProtoTestCommand
	39.5.3 SimpleProtoExecuteCommand
	39.5.4 SimpleProtoSendResponse

	40 Compatibility of TWN4 MultiTech Mini Reader
	41 Disclaimer

