
TWN4

API Reference

DocRev1, February 11, 2013

Elatec GmbH

Contents

Contents

1 System Functions . 8
1.1 SysCall . 8
1.2 Reset . 8
1.3 StartBootloader . 8
1.4 GetSysTicks . 9
1.5 GetVersionString . 9
1.6 GetUSBType . 10
1.7 GetDeviceType . 10

2 I/O Functions . 11
2.1 Configuration . 11

2.1.1 Set COM-Port Parameters . 11
2.1.2 Get USB Device State . 11
2.1.3 Get Host Channel . 12

2.2 Data I/O . 13
2.2.1 Host Communication Channel . 13

2.2.1.1 Send Byte . 13
2.2.1.2 Test Byte . 13
2.2.1.3 Read Byte . 13

2.2.2 Any Communication Channel . 14
2.2.2.1 Query I/O Buffer Size . 14
2.2.2.2 Get I/O Buffer Byte Count 14
2.2.2.3 Test Empty . 15
2.2.2.4 Test Full . 15
2.2.2.5 Send Byte . 16
2.2.2.6 Read Byte . 16

3 Memory Functions . 17
3.1 Byte Operations . 17

3.1.1 Compare Bytes . 17
3.1.2 Copy Bytes . 17
3.1.3 Fill Bytes . 18
3.1.4 Swap Bytes . 18

3.2 Bit Operations . 19
3.2.1 Read Bit . 19
3.2.2 Write Bit . 19
3.2.3 Copy Bit . 20
3.2.4 Compare Bits . 21

Page 2 of 126

Contents

3.2.5 Copy Bits . 21
3.2.6 Fill Bits . 22
3.2.7 Swap Bits . 22
3.2.8 Count Bits . 23

4 Peripheral Functions . 24
4.1 General Purpose Inputs/Outputs (GPIOs) . 24

4.1.1 Configuration . 24
4.1.1.1 Outputs . 24
4.1.1.2 Inputs . 25

4.1.2 Basic Port Functions . 25
4.1.2.1 Set GPIOs to Logical Level 25
4.1.2.2 Toggle GPIOs . 26
4.1.2.3 Waveform Generation . 26
4.1.2.4 Read GPIOs . 27

4.1.3 Higher Level Port Functions . 27
4.1.3.1 Send Data in Wiegand Format 27
4.1.3.2 Send Data in Omron Format 29

4.2 Beeper . 30
4.3 LEDs . 31

4.3.1 General Purpose LED Functions . 31
4.3.1.1 Initialization . 31
4.3.1.2 Set LEDs On/Off . 32
4.3.1.3 Toggle LEDs . 32
4.3.1.4 Blink LEDs . 32
4.3.1.5 Get LED State . 33

4.3.2 Diagnostic LED . 33
4.3.2.1 Set Diagnostic LED On/Off 33
4.3.2.2 Toggle Diagnostic LED . 34
4.3.2.3 Get LED State . 34

5 Conversion Functions . 35
5.1 Hexadecimal ASCII to Binary . 35

5.1.1 Scan Hexadecimal Character . 35
5.1.2 Scan Hexadecimal String . 35

5.2 Binary to Hexadecimal ASCII . 36
6 I2C Functions . 38

6.1 Initialization/Deinitialization . 38
6.1.1 I2CInit . 38
6.1.2 I2CDeInit . 38
6.1.3 Examples . 38

6.2 Communication (Master) . 39
6.2.1 I2CMasterStart . 39
6.2.2 I2CMasterStop . 39
6.2.3 I2CMasterTransmitByte . 39
6.2.4 I2CMasterReceiveByte . 39

Page 3 of 126

Contents

6.2.5 I2CMasterBeginWrite . 40
6.2.6 I2CMasterBeginRead . 40
6.2.7 I2CMasterSetAck . 40
6.2.8 Examples . 40

6.3 Communication (Slave) . 41
6.3.1 Slave to Master . 42
6.3.2 Master to Slave . 42
6.3.3 Examples . 42

7 RF Functions . 44
7.1 SearchTag . 44
7.2 SetRFOff . 44
7.3 SetTagTypes . 45
7.4 GetTagTypes . 47
7.5 GetSupportedTagTypes . 47

8 Hitag 1- and Hitag S-Specific Transponder Operations 48
8.1 Read/Write Data . 48

8.1.1 Hitag1S_ReadPage . 48
8.1.2 Hitag1S_WritePage . 49
8.1.3 Hitag1S_ReadBlock . 49
8.1.4 Hitag1S_WriteBlock . 49

8.2 Hitag1S_Halt . 50
9 Hitag 2-Specific Transponder Operations . 51

9.1 Read/Write Data . 51
9.1.1 Hitag2_ReadPage . 51
9.1.2 Hitag2_WritePage . 51
9.1.3 Hitag2_SetPassword . 52

9.2 Hitag2_Halt . 52
10 TILF (TIRIS) Functions . 53

10.1 Search Function . 53
10.1.1 TILF_SearchTag . 53

10.2 Single-Page Read/Write Function . 54
10.2.1 TILF_ChargeOnlyRead . 54
10.2.2 TILF_ChargeOnlyReadLo . 54
10.2.3 TILF_SPProgramPage . 54
10.2.4 TILF_SPProgramPageLo . 55

10.3 Multi-Page Read/Write Function . 55
10.3.1 TILF_MPGeneralReadPage . 55
10.3.2 TILF_MPSelectiveReadPage . 55
10.3.3 TILF_MPProgramPage . 56
10.3.4 TILF_MPSelectiveProgramPage . 56
10.3.5 TILF_MPLockPage . 57
10.3.6 TILF_MPSelectiveLockPage . 57
10.3.7 TILF_MPGeneralReadPageLo . 58
10.3.8 TILF_MPSelectiveReadPageLo . 58

Page 4 of 126

Contents

10.3.9 TILF_MPProgramPageLo . 58
10.3.10 TILF_MPSelectiveProgramPageLo 59
10.3.11 TILF_MPLockPageLo . 59
10.3.12 TILF_MPSelectiveLockPageLo . 60

10.4 Multi-Usage Read/Write Function . 60
10.4.1 TILF_MUGeneralReadPage . 60
10.4.2 TILF_MUSelectiveReadPage . 60
10.4.3 TILF_MUSpecialReadPage . 61
10.4.4 TILF_MUProgramPage . 61
10.4.5 TILF_MUSelectiveProgramPage . 62
10.4.6 TILF_MUSpecialProgramPage . 62
10.4.7 TILF_MULockPage . 62
10.4.8 TILF_MUSelectiveLockPage . 63
10.4.9 TILF_MUSpecialLockPage . 63

11 Legic-Specific Functions . 64
11.1 Direct Access of Legic Chip . 64

11.1.1 SM4200_GenericRaw . 64
11.1.2 SM4200_Generic . 65

12 Mifare Classic Specific Transponder Operations 67
12.1 Login . 67
12.2 Read/Write Data . 68

12.2.1 Read Data Block . 68
12.2.2 Write Data Block . 69

12.3 Handling of Value Blocks . 69
12.3.1 Read Value Block . 69
12.3.2 Write Value Block . 70
12.3.3 Increment Value Block . 70
12.3.4 Decrement Value Block . 71

13 Mifare Ultralight/Ultralight C Specific Transponder Operations 73
13.1 Login (Ultralight C only) . 73
13.2 Read/Write Data . 74

13.2.1 Read Page . 74
13.2.2 Write Page . 74

14 ISO15693 Specific Transponder Operations . 76
14.1 Generic ISO15693 Command . 76
14.2 Gather Tag Specific Information . 77

14.2.1 Get System Information . 77
14.2.2 Get Tag Type . 77

14.2.2.1 Get Tag Type From UID . 77
14.2.2.2 Get Tag Type From System Information 79

14.3 Read/Write Data . 80
14.3.1 Read Single Block . 80
14.3.2 Write Single Block . 80

Page 5 of 126

Contents

15 Cryptographic Operations . 83
15.1 Triple-DES . 83

15.1.1 Initialization . 83
15.1.2 Encrypt . 84
15.1.3 Decrypt . 85

15.2 AES . 86
15.2.1 Initialization . 86
15.2.2 Encrypt . 87
15.2.3 Decrypt . 87

16 DESFire Specific Transponder Operations . 89
16.1 Security Related Operations . 90

16.1.1 Authenticate . 90
16.1.2 Get Key Version . 93
16.1.3 Get Key Settings . 94
16.1.4 Change Key Settings . 96
16.1.5 Change Key . 96

16.2 Transponder Related Operations . 98
16.2.1 Create Application . 98
16.2.2 Delete Application . 99
16.2.3 Get Application IDs . 100
16.2.4 Select Application . 101
16.2.5 Format Transponder . 102
16.2.6 Get Transponder Information . 102
16.2.7 Get Available Memory Space . 104
16.2.8 Get Card UID . 104
16.2.9 Set Transponder Configuration . 105

16.2.9.1 Disable Format Tag . 105
16.2.9.2 Enable Random ID . 106
16.2.9.3 Set Default Key . 106
16.2.9.4 Set User-defined Answer To Select (ATS) 107

16.3 Application Related Operations . 108
16.3.1 Create File . 110
16.3.2 Delete File . 112
16.3.3 Get File IDs . 112
16.3.4 Get File Settings . 113
16.3.5 Change File Settings . 115

16.4 File Related Operations . 116
16.4.1 Data Files . 116

16.4.1.1 Read Data . 116
16.4.1.2 Write Data . 118

16.4.2 Value Files . 121
16.4.2.1 Get Value . 121
16.4.2.2 Debit . 122
16.4.2.3 Credit . 123

Page 6 of 126

Contents

16.4.2.4 Limited Credit . 124
16.4.3 Commit Transaction . 125
16.4.4 Abort Transaction . 126

Page 7 of 126

1 System Functions

1 System Functions

1.1 SysCall

This function is useful for writing interfaces, which do a remote call of a system func-
tion,

bool SysCall(TEnvSysCall *Env);

Parameters:

TEnvSysCall *Env Pointer to a structure which specifies parameters of the func-
tions to be called.

Return: If the function has been called the return value is true, other-
wise it is false. In this case the specified function does not
exist.

1.2 Reset

This functions is performing a reset of the firmware, which also includes a restart of the
currently running App.

void Reset(void);

Parameters: None.

Return: None.

1.3 StartBootloader

This function is performing a manual call of the boot loader. As a consequence the execution
of the App is stopped.

void StartBootloader(void);

Parameters: None.

Return: None.

Page 8 of 126

1 System Functions

1.4 GetSysTicks

Retrieve number of system ticks, specified in multiple of 1 milliseconds, since startup of the
firmware.

unsigned long GetSysTicks(void);

Parameters: None.

Return: Number of system ticks since startup of the firmware. The
returned value will restart at 0 after 23̂2 system ticks (around
1193 hours).

1.5 GetVersionString

Retrieve version information. The function generates a ASCII string, terminated by 0.

int GetVersionString(char *VersionString,int MaxLen);

Parameters:

char *VersionString Pointer to an array of characters, which will receive the version
information.

int MaxLen Maximum number of characters, the specified byte array can
receive excluding the 0-termination.

Return: Length of the returned string excluding the 0-termination.

Example:

// This sample demonstrates, how to send the version string
// to the host
void WriteChar(char Char)
{

HostWriteByte(Char);
}
void WriteString(const char *String)
{

while (*String)
WriteChar(*String++);

}
void WriteVersion(void)
{

char Version[30+1];
GetVersionString(Version,sizeof(Version)-1);
WriteString(Version);

}

Page 9 of 126

1 System Functions

1.6 GetUSBType

Retrieve type of USB communication. This could by keyboard emulation or CDC emulation
or some other value for future or custom implementations.

int GetUSBType(void);

Parameters: None.

Return: USBTYPE_NONE: No USB stack, USBTYPE_CDC: CDC device
(virtual COM port), USBTYPE_CDC: HID keyboard

1.7 GetDeviceType

Retrieve type of underlying TWN4 hardware.

int GetDeviceType(void);

Parameters: None.

Return: DEVTYPE_LEGICNFC: TWN4 Legic NFC, DEVTYPE_MIFARENFC:
TWN4 Mifare NFC

Page 10 of 126

2 I/O Functions

2 I/O Functions

2.1 Configuration

2.1.1 Set COM-Port Parameters

This function can be used to configure the asynchronous serial communication ports COM1
and COM2.

bool SetCOMParameters
(
int Channel,
TCOMParameters* COMParameters
);

Parameters:

int Channel Specify the communication port which shall be config-
ured. Use one of the predefined constants CHANNEL_COM1 or
CHANNEL_COM2.

TCOMParameters*
COMParameters

Reference to the structure that holds the communication pa-
rameters. See the description of TCOMParameters for details.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

2.1.2 Get USB Device State

This function returns the functional state of the USB-controller in case the reader is running
as USB-device.

int GetUSBDeviceState(void);

Page 11 of 126

2 I/O Functions

Members Length
(Bits)

Description

unsigned long BaudRate 32 This member holds the baud rate.

byte WordLength 8 This member holds the word-length
in bits. Use the predefined constant
COM_WORDLENGTH_8.

byte Parity 8 This member holds the type of parity to
be used. Use one of the predefined con-
stants COM_PARITY_NONE, COM_PARITY_ODD or
COM_PARITY_EVEN.

byte StopBits 8 This member holds the number of stop
bits. Use one of the predefined con-
stants COM_STOPBITS_0_5, COM_STOPBITS_1,
COM_STOPBITS_1_5 or COM_STOPBITS_2.

byte FlowControl 8 This member holds the type of flow control
to be used. Use the predefined constant
COM_FLOWCONTROL_NONE.

Table 2.1: Definition of TCOMParameters

Parameters: None.

Return: Depending on the functional state, the re-
turn value is one of the predefined constants
USB_DEVICE_STATE_DEFAULT, USB_DEVICE_STATE_ADDRESSED,
USB_DEVICE_STATE_CONFIGURED or
USB_DEVICE_STATE_SUSPENDED.

2.1.3 Get Host Channel

This function returns the channel, which is actually configured for host communication.

int GetHostChannel(void);

Parameters: None.

Return: The return value is one of the predefined constants
CHANNEL_NONE, CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2 or
CHANNEL_I2C.

Page 12 of 126

2 I/O Functions

2.2 Data I/O

2.2.1 Host Communication Channel

2.2.1.1 Send Byte

Use this function to send one byte to the host through the actually configured host-channel.
If the output buffer is completely occupied, the function blocks until there is enough space.

void HostWriteByte
(
byte Byte
);

Parameters:

byte Byte The byte to be sent.

Return: None.

2.2.1.2 Test Byte

Use this function to check if there is a byte available in the input buffer of the host-channel.

bool HostTestByte(void);

Parameters: None.

Return: If there is a byte available, the return value is true, otherwise
it is false.

2.2.1.3 Read Byte

Use this function to read a byte from the input buffer of the host-channel. If there is no byte
available, the function blocks until there is one.

byte HostReadByte(void);

Parameters: None.

Return: The byte which was read from the input buffer.

Page 13 of 126

2 I/O Functions

2.2.2 Any Communication Channel

2.2.2.1 Query I/O Buffer Size

Use this function to retrieve the input/output buffer size of a specific communication channel.

int GetBufferSize
(
int Channel,
int Dir
);

Parameters:

int Channel Specify the communication channel. Use one of the prede-
fined constants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2 or
CHANNEL_I2C.

int Dir Specify the direction. Use one of the predefined constants
DIR_OUT or DIR_IN.

Return: The buffer size in bytes.

2.2.2.2 Get I/O Buffer Byte Count

Use this function to retrieve the number of bytes that are actually stored in the respective I/O
buffer. In case of querying the output direction, the functions returns the number of bytes
that have not been sent yet, in case of the input direction the number of available bytes that
can be read is returned.

int GetByteCount
(
int Channel,
int Dir
);

Parameters:

int Channel Specify the communication channel. Use one of the prede-
fined constants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2 or
CHANNEL_I2C.

int Dir Specify the direction. Use one of the predefined constants
DIR_OUT or DIR_IN.

Return: The number of bytes that are stored in the buffer.

Page 14 of 126

2 I/O Functions

2.2.2.3 Test Empty

Check if there are any bytes in the specified I/O buffer.

bool TestEmpty
(
int Channel,
int Dir
);

Parameters:

int Channel Specify the communication channel. Use one of the prede-
fined constants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2 or
CHANNEL_I2C.

int Dir Specify the direction. Use one of the predefined constants
DIR_OUT or DIR_IN.

Return: If the buffer is empty, the return value is true, otherwise it is
false.

2.2.2.4 Test Full

Check if the specified I/O buffer can receive any further data.

bool TestFull
(
int Channel,
int Dir
);

Parameters:

int Channel Specify the communication channel. Use one of the prede-
fined constants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2 or
CHANNEL_I2C.

int Dir Specify the direction. Use one of the predefined constants
DIR_OUT or DIR_IN.

Return: If the buffer is full, the return value is true, otherwise it is
false.

Page 15 of 126

2 I/O Functions

2.2.2.5 Send Byte

Use this function to send one byte through a specific communication channel. If the respec-
tive output buffer is completely occupied, the function blocks until there is enough space.

void WriteByte
(
int Channel,
byte Byte
);

Parameters:

int Channel Specify the communication channel. Use one of the prede-
fined constants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2 or
CHANNEL_I2C.

byte Byte The byte to be sent.

Return: None.

2.2.2.6 Read Byte

Use this function to read a byte from the input buffer of a specific communication channel. If
there is no byte available, the function blocks until there is one.

byte ReadByte
(
int Channel
);

Parameters:

int Channel Specify the communication channel. Use one of the prede-
fined constants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2 or
CHANNEL_I2C.

Return: The byte which was read from the input buffer.

Page 16 of 126

3 Memory Functions

3 Memory Functions

3.1 Byte Operations

3.1.1 Compare Bytes

Compare two byte arrays.

bool CompBytes
(
const byte* Data1,
const byte* Data2,
int ByteCount
);

Parameters:

const byte* Data1 Reference to an array of bytes.

const byte* Data1 Reference to an array of bytes.

int ByteCount Number of bytes (beginning from index 0) to be compared.

Return: If the two arrays are identical, the return value is true, other-
wise it is false.

3.1.2 Copy Bytes

Copy bytes from a source to a destination. Source and destination may be identical and
the source section may overlap the destination. Depending on that, the correct method for
copying will be chosen.

void CopyBytes
(
byte* DestBytes,
const byte* SourceBytes,
int ByteCount
);

Page 17 of 126

3 Memory Functions

Parameters:

byte* DestBytes Reference to an array of bytes which is the destination of the
copy operation.

const byte* SourceBytes Reference to an array of bytes which is the source of the copy
operation.

int ByteCount Number of bytes to be copied.

Return: None.

3.1.3 Fill Bytes

Fill bytes within a given array with a value.

void FillBytes
(
byte* Dest,
byte Value,
int ByteCount
);

Parameters:

byte* Dest Reference to an array of bytes which is the destination for the
operation.

byte Value The byte value with which the array will be filled.

int ByteCount Number of bytes to be filled.

Return: None.

3.1.4 Swap Bytes

Swap the order of bytes within an array.

void FillBytes
(
byte* Data,
int ByteCount
);

Page 18 of 126

3 Memory Functions

Parameters:

byte* Data Reference to an array of bytes which is the destination for the
operation.

int ByteCount Number of bytes to be swapped.

Return: None.

3.2 Bit Operations

Bit operations are working on bit fields. A bit field is represented by an array of bytes. The
diagram below shows how bit operations are interpreting a given bit offset within an array of
bytes:

3.2.1 Read Bit

Read the value of one single bit within a bit field.

bool ReadBit
(
const byte* Byte,
int BitNr
);

Parameters:

const byte* Byte Reference to an array of bytes which represents the bit field
where one bit shall be read.

int BitNr Position of the bit within the bit field.

Return: The bit value: true means 1, false means 0.

3.2.2 Write Bit

Set one single bit within a bit field to a given value.

Page 19 of 126

3 Memory Functions

void WriteBit
(
byte* Byte,
int BitNr,
bool Value
);

Parameters:

byte* Byte Reference to an array of bytes which represents the bit field
where one bit shall be written.

int BitNr Position within the bit field, where the bit is to be written.

bool Value The bit value: true means 1, false means 0.

Return: None.

3.2.3 Copy Bit

Copy one single bit from a source to a destination. Source and destination may be identical.

void CopyBit
(
byte* Dest,
int DestBitNr,
const byte* Source,
int SourceBitNr
);

Parameters:

byte* Dest Reference to an array of bytes which is the destination for the
operation.

int DestBitNr Position within the destination bit field, where the bit is copied
to.

const byte* Source Reference to an array of bytes which is the source for the
operation.

int SourceBitNr Position within the source bit field, where the bit is copied
from.

Return: None.

Page 20 of 126

3 Memory Functions

3.2.4 Compare Bits

Compare two bit sets.

bool CompBits
(
const byte* Data1,
int Data1StartBit,
const byte* Data2,
int Data2StartBit,
int BitCount
);

Parameters:

const byte* Data1 Reference to an array of bytes which represents a bit field.

int Data1StartBit Start-index (beginning from 0) of the first bit field.

const byte* Data2 Reference to an array of bytes which represents a bit field.

int Data1StartBit Start-index (beginning from 0) of the second bit field.

int BitCount Number of bits to be compared.

Return: If the two bit-sets are identical, the return value is true, other-
wise it is false.

3.2.5 Copy Bits

Copy bits from a source to a destination. Source and destination may be identical and the
source section may overlap the destination. Depending on that, the correct method for copy-
ing will be chosen.

void CopyBits
(
byte* DestBits,
int StartDestBit,
const byte* SourceBits,
int StartSourceBit,
int BitCount
);

Page 21 of 126

3 Memory Functions

Parameters:

byte* DestBits Reference to an array of bytes which represents a bit field
which is the destination of the copy operation.

int StartDestBit First bit within the destination bit field where the bits are
copied to.

const byte* SourceBits Reference to an array of bytes which represents a bit field
which is the source of the copy operation.

int StartSourceBit First bit within the source bit field where the bits are copied
from.

int BitCount Number of bits to be copied.

Return: None.

3.2.6 Fill Bits

Fill bits within a given bit field with either 0 or 1.

void FillBits
(
byte* Dest,
int StartBit,
bool Value,
int BitCount
);

Parameters:

byte* Dest Reference to an array of bytes which represents a bit field
which is the destination for the operation.

int StartBit First bit within the bit field where the bits are filled.

bool Value The bit value: true means 1, false means 0.

int BitCount Number of bits to be filled.

Return: None.

3.2.7 Swap Bits

Swap the order of bits within a bit field.

void SwapBits
(
byte* Data,

Page 22 of 126

3 Memory Functions

int StartBit,
int BitCount
);

Parameters:

byte* Data Reference to an array of bytes which represents a bit field
which is the destination for the operation.

int StartBit First bit within the bit field where bits are swapped.

int BitCount Number of bits to be swapped.

Return: None.

3.2.8 Count Bits

Count the number of ones or zeros within a bit field.

int CountBits
(
const byte* Data,
int StartBit,
bool Value,
int BitCount
);

Parameters:

const byte* Data Reference to an array of bytes which represents a bit field.

int StartBit First bit within the bit field where counting shall start.

bool Value The bit value: true means count ones, false means count
zeros.

int BitCount Size of the bit field.

Return: Number of counted bits.

Page 23 of 126

4 Peripheral Functions

4 Peripheral Functions

4.1 General Purpose Inputs/Outputs (GPIOs)

4.1.1 Configuration

4.1.1.1 Outputs

Use this function to configure one or several GPIOs as output. Each output can be config-
ured to have an integrated pull-up or pull-down resistor. The output driver characteristic is
either Push-Pull or Open Drain.

void GPIOConfigureOutputs
(
int Bits,
int PullUpDown,
int OutputType
);

Parameters:

int Bits Specify the GPIOs that shall be configured for output. Several
GPIOs can be configured simultaneously by using the bitwise
or-operator (|). Use the predefined constants GPIO0 through
GPIO7 for specifying the GPIOs.

int PullUpDown Specify the behaviour of the internal weak pull-up/down resis-
tor. Use one of the predefined constants GPIO_PUPD_NOPULL,
GPIO_PUPD_PULLUP or GPIO_PUPD_PULLDOWN.

int OutputType Specify the output driver characteristic. Use one
the predefined constants GPIO_OTYPE_PUSHPULL or
GPIO_OTYPE_OPENDRAIN.

Return: None.

Page 24 of 126

4 Peripheral Functions

4.1.1.2 Inputs

Use this function to configure one or several GPIOs as input. Each output can be configured
to have an integrated pull-up or pull-down resistor, alternatively it can be left floating.

void GPIOConfigureInputs
(
int Bits,
int PullUpDown
);

Parameters:

int Bits Specify the GPIOs that shall be configured for input. Several
GPIOs can be configured simultaneously by using the bitwise
or-operator (|). Use the predefined constants GPIO0 through
GPIO7 for specifying the GPIOs.

int PullUpDown Specify the behaviour of the internal weak pull-up/down resis-
tor. Use one of the predefined constants GPIO_PUPD_NOPULL,
GPIO_PUPD_PULLUP or GPIO_PUPD_PULLDOWN.

Return: None.

4.1.2 Basic Port Functions

4.1.2.1 Set GPIOs to Logical Level

Use this function to set one or several GPIOs to logical high or low level. The respective
ports must have been configured to output in advance.

void GPIOSetBits(int Bits);
void GPIOClearBits(int Bits);

Parameters:

int Bits Specify the GPIOs that shall be set to a logical level. Several
GPIOs can be handled simultaneously by using the bitwise
or-operator (|). Use the predefined constants GPIO0 through
GPIO7 for specifying the GPIOs.

Return: None.

Page 25 of 126

4 Peripheral Functions

4.1.2.2 Toggle GPIOs

Use this function to toggle the logical level of one or several GPIOs. The respective ports
must have been configured to output in advance.

void GPIOToggleBits
(
int Bits
);

Parameters:

int Bits Specify the GPIOs that shall be toggled. Several GPIOs can
be handled simultaneously by using the bitwise or-operator (|).
Use the predefined constants GPIO0 through GPIO7 for speci-
fying the GPIOs.

Return: None.

4.1.2.3 Waveform Generation

Use this function to generate a pulse-width modulated square waveform with constant fre-
quency on one or several GPIOs. The respective ports must have been configured to output
in advance.

void GPIOBlinkBits
(
int Bits,
int TimeHi,
int TimeLo
);

Parameters:

int Bits Specify the GPIOs that shall generate the waveform. Several
GPIOs can be handled simultaneously by using the bitwise
or-operator (|). Use the predefined constants GPIO0 through
GPIO7 for specifying the GPIOs.

int TimeHi Specify the duration for logical high level in milliseconds.

int TimeLo Specify the duration for logical low level in milliseconds.

Return: None.

Page 26 of 126

4 Peripheral Functions

4.1.2.4 Read GPIOs

Use this function to read the logical level of one GPIO that has been configured as input.

int GPIOTestBit
(
int Bit
);

Parameters:

int Bits Specify the GPIO that shall be read. Use one of the prede-
fined constants GPIO0 through GPIO7 for specifying the GPIO.

Return: If the GPIO has logical high level, the return value is 1, other-
wise it is 0.

4.1.3 Higher Level Port Functions

4.1.3.1 Send Data in Wiegand Format

Use this function to send a bitstream via a software emulated Wiegand interface. A Wie-
gand interface uses two data lines, one line is used to transmit ones, the other one is used to
transmit zeros. Each GPIO can be individually configured to act as data line. Note that the
integrated API LED-functions are working with GPIO0 to GPIO2 by default, so the Wiegand
data lines should be selected carefully.

void SendWiegand(int GPIOData0,int GPIOData1,int PulseTime,
int IntervalTime,byte* Bits,int BitCount);

Page 27 of 126

4 Peripheral Functions

Parameters:

int GPIOData0 Specify the GPIO that shall be used to transmit zeros. Use
one of the predefined constants GPIO0 through GPIO7 for spec-
ifying the GPIO.

int GPIOData1 Specify the GPIO that shall be used to transmit ones. Use one
of the predefined constants GPIO0 through GPIO7 for specifying
the GPIO.

int PulseTime Specify the pulse duration in microseconds.

int IntervalTime Specify the duration in microseconds between consecutive
pulses.

byte* Bits Reference to an array of bytes which represents a bit field
which holds the data to be sent.

int BitCount Specify the number of bits to be sent.

Return: None.

See timing diagram below for details about how the timing values are used:

Example:

Here is an example which shows minimum code for doing a Wiegand output:

// Init Section:
// Use GPIO2 and GPIO3 for Wiegand interface
GPIOConfigureOutputs(GPIO2 | GPIO3,GPIO_PUPD_NOPULL,GPIO_OTYPE_PUSHPULL);
// Enter idle level. In this case we have active low outputs
GPIOSetBits(GPIO2 | GPIO3);
// Prepare some Wiegand data:
byte Bits[4];
Bits[0] = 0x12;
Bits[1] = 0x34;
Bits[2] = 0x56;
Bits[3] = 0x78;
// Now send the bits
SendWiegand(GPIO2,GPIO3,100,1000,Bits,32);

Note:

Page 28 of 126

4 Peripheral Functions

• It is up to the App to complete Wiegand data with parity bits and decide number of
bits. In this way the App is fully flexible regarding data to be sent.

• The idle level of the Wiegand interface is determined by state of the outputs be-
fore calling SendWiegand. It must be setup by a separate call to GPIOSetBits or
GPIOClearBits depending on the requirements of the underlying hardware.

• The GPIOs might need additional circuitry against shortcut or voltage level depending
on the intended application.

4.1.3.2 Send Data in Omron Format

Use this function to send a bit stream via a software-emulated Omron interface. An Om-
ron interface uses two lines for data transmission, one for clock and one for the data bit
stream. Each GPIO can be individually configured to act as data or clock line. Note that the
integrated API LED-functions are working with GPIO0 to GPIO2 by default, so the Omron
interface lines should be selected carefully.

void SendOmron(int GPIOClock,int GPIOData,int T1,int T2,int T3,
byte* Bits,int BitCount);

Parameters:

int GPIOClock Specify the GPIO that shall be used for generating the clock
signal. Use one of the predefined constants GPIO0 through
GPIO7 for specifying the GPIO.

int GPIOData Specify the GPIO that shall be used for data transmission.
Use one of the predefined constants GPIO0 through GPIO7 for
specifying the GPIO.

int T1

int T2

int T3

byte* Bits Reference to an array of bytes which represents a bit field
which holds the data to be sent.

int BitCount Specify the number of bits to be sent.

Return: None.

See timing diagram below for details about how the timing values are used:

Page 29 of 126

4 Peripheral Functions

Example:

Here is an example which shows minimum code for doing a clock/data output:

// Init Section:
// Use GPIO2 and GPIO3 for the clock/data interface
GPIOConfigureOutputs(GPIO2 | GPIO3,GPIO_PUPD_NOPULL,GPIO_OTYPE_PUSHPULL);
// Enter idle level. In this case we have active low outputs
GPIOSetBits(GPIO2 | GPIO3);
// Prepare some data:
byte Bits[4];
Bits[0] = 0x12;
Bits[1] = 0x34;
Bits[2] = 0x56;
Bits[3] = 0x78;
// Now send the bits
SendOmron(GPIO2,GPIO3,500,1000,500,Bits,32);

Note:

• It is up to the App to complete data with parity bits and decide number of bits. In this
way the App is fully flexible regarding data to be sent.

• The idle level of the clock/data interface is determined by state of the outputs before
calling SendOmron. It must be setup by a separate call to GPIOSetBits or GPIOClearBits
depending on the requirements of the underlying hardware.

• The GPIOs might need additional circuitry against shortcut or voltage level depending
on the intended application.

4.2 Beeper

Use this function to sound a beep at the dedicated beeper port.

void Beep
(
int Volume,
int Frequency,
int OnTime,

Page 30 of 126

4 Peripheral Functions

int OffTime
);

Parameters:

int Volume Specify the volume in percent from 0 to 100.

int Frequency Specify the frequency in Hertz.

int OnTime Specify the duration of the beep in milliseconds.

int OffTime Specify the length of the pause after the beep. This is useful
for generating melodies. If this is not required, the parameter
may have the value 0.

Return: None.

4.3 LEDs

4.3.1 General Purpose LED Functions

These functions are related for usage with TWN4 Desktop and TWN4 Panel where the dif-
ferent LEDs have a dedicated connection scheme. The LEDs are connected as follows:

• GPIO0 → Red

• GPIO1 → Green

• GPIO2 → Yellow (Panel version only)

4.3.1.1 Initialization

Use this macro to initialize the respective GPIOs to drive LEDs.

LEDInit(LEDs);

Parameters:

LEDs Specify the GPIOs that shall be configured for LED operation.
Several GPIOs can be configured simultaneously by using the
bitwise or-operator (|). Use the predefined constants REDLED,
GREENLED or YELLOWLED for specifying the GPIOs.

Return: None.

Page 31 of 126

4 Peripheral Functions

4.3.1.2 Set LEDs On/Off

Use these macros to set one or several LEDs on/off.

LEDOn(LEDs);
LEDOff(LEDs);

Parameters:

LEDs Specify the LEDs that shall be set on/off. Several LEDs can
be handled simultaneously by using the bitwise or-operator (|).
Use the predefined constants REDLED, GREENLED or YELLOWLED
for specifying the LEDs.

Return: None.

4.3.1.3 Toggle LEDs

Use this macro to toggle one or several LEDs.

LEDToggle(LEDs);

Parameters:

LEDs Specify the LEDs that shall be toggled. Several LEDs can be
handled simultaneously by using the bitwise or-operator (|).
Use the predefined constants REDLED, GREENLED or YELLOWLED
for specifying the LEDs.

Return: None.

4.3.1.4 Blink LEDs

Use this macro to let one or several LEDs blink.

LEDBlink(LEDs, TimeOn, TimeOff);

Page 32 of 126

4 Peripheral Functions

Parameters:

LEDs Specify the LEDs that shall blink. Several LEDs can be han-
dled simultaneously by using the bitwise or-operator (|). Use
the predefined constants REDLED, GREENLED or YELLOWLED for
specifying the LEDs.

TimeOn Specify the on-time in milliseconds.

TimeOff Specify the off-time in milliseconds.

Return: None.

4.3.1.5 Get LED State

Use this macro to determine if a LED is on or off.

LEDIsOn(LED);

Parameters:

LED Specify the LED that shall be queried. Use one of the prede-
fined constants REDLED, GREENLED or YELLOWLED for specifying
the LED.

Return: If the queried LED is on, the return value is 1, otherwise it is
0.

4.3.2 Diagnostic LED

The TWN4 Core Module has one integrated LED that can be used for diagnostic purposes.
There is no initialization necessary.

4.3.2.1 Set Diagnostic LED On/Off

Use these functions to set the diagnostic LED on or off.

void DiagLEDOn(void);
void DiagLEDOff(void);

Parameters: None.

Return: None.

Page 33 of 126

4 Peripheral Functions

4.3.2.2 Toggle Diagnostic LED

Use this function to toggle the diagnostic LED.

void DiagLEDToggle(void);

Parameters: None.

Return: None.

4.3.2.3 Get LED State

Use this function to determine if the diagnostic LED is on or off.

bool DiagLEDIsOn(void);

Parameters: None.

Return: If the diagnostic LED is on, the return value is true, otherwise
it is false.

Page 34 of 126

5 Conversion Functions

5 Conversion Functions

5.1 Hexadecimal ASCII to Binary

5.1.1 Scan Hexadecimal Character

Convert an ASCII-character which represents a hexadecimal number into its binary repre-
sentation.

int ScanHexChar
(
byte Char
);

Parameters:

byte Char ASCII-coded hexadecimal character. The input value may be
one of the characters ’0’-’9’, ’a’-’f’ or ’A’-’F’.

Return: If the character is a valid hexadecimal expression, the return
value is the binary representation (a number between 0 and
15), else it is -1.

5.1.2 Scan Hexadecimal String

Convert an array of bytes containing ASCII characters which represents hexadecimal num-
bers into their binary representation. The conversion is done in place. This means that after
successful conversion, number of valid bytes is half of the given count of ASCII characters
(two hex digits represent one binary byte).

int ScanHexString
(
byte* ASCII,
int ByteCount
);

Page 35 of 126

5 Conversion Functions

Parameters:

byte* ASCII Reference to an array of ASCII-coded hexadecimal charac-
ters. The array may contain the characters ’0’-’9’, ’a’-’f’ or ’A’-
’F’. The array is also the destination for the operation.

int ByteCount Number of (ASCII-) bytes to be converted.

Return: Number of successfully converted bytes.

5.2 Binary to Hexadecimal ASCII

Convert a number, which is given as a bit field into ASCII format, and store it in an array of
bytes. The conversion is made in the following sequence:

1. Convert the binary data to a number of digits, which is determined by the parameter
MaxDigits. If MaxDigits is 0, then the number of digits is determined by the binary
data itself.

2. If the result of the conversion is less than the number of digits specified by MinDigits,
precede the converted number with zeros according to MinDigits.

int ConvertBinaryToString
(
const byte* SourceBits,
int StartBit,
int BitCnt,
char* String,
int Radix,
int MinDigits,
int MaxDigits
);

Page 36 of 126

5 Conversion Functions

Parameters:

const byte* SourceBits A reference to an array of bytes, which contains the bit field.

int StartBit Index of the first bit to be converted.

int BitCnt The number of bits, which are valid within the array of bytes.

char* String A reference to an array of bytes, which receives the result of
the conversion.

int Radix Base for conversion, use:
• 2 for binary conversion
• 8 for octal conversion
• 10 for decimal conversion
• 16 for hexadecimal conversion

int MinDigits Specifies the minimum number of digits, the output should
contain. If MinDigits is 0, then at least 1 digit is sent. If
MinDigits is greater than the actual width of the number to be
converted, then the number is preceded by zeros.

int MaxDigits Specifies the maximum number of digits, the output should
contain. This allows inhibit of leading digits of an output. If
MaxDigits is 0, then the number of digits is determined by the
given binary data itself.

Return: The actual number of ASCII bytes, which has been stored in
the array String.

Page 37 of 126

6 I2C Functions

6 I2C Functions

This chapter describes functions for accessing the I2C interface of TWN4. I2C is also known
as TWI (Two-Wire Interface).

6.1 Initialization/Deinitialization

6.1.1 I2CInit

bool I2CInit(int Mode);

Parameters:

int Mode This value specifies the mode of operation.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

6.1.2 I2CDeInit

void I2CDeInit(void);

Parameters: None.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

6.1.3 Examples

// Initialize as master
I2CInit(I2CMODE_MASTER);

// Initialize as slave.
// I2CMODE_SLAVE: Setup interface as slave
// 0x30: Address of of this slave
// I2CMODE_CHANNEL: Do communication via channels (this is the
// only currently available option, therefore
// a must to be specified)
I2CInit(I2CMODE_SLAVE | 0x30 | I2CMODE_CHANNEL);

Page 38 of 126

6 I2C Functions

6.2 Communication (Master)

6.2.1 I2CMasterStart

Generate a I2C start sequence.

void I2CMasterStart(void);

Parameters: None.

Return: None.

6.2.2 I2CMasterStop

Generate a I2C stop sequence.

void I2CMasterStop(void);

Parameters: None.

Return: None.

6.2.3 I2CMasterTransmitByte

Transmit one byte to a slave.

void I2CMasterTransmitByte(byte Byte);

Parameters:

byte Byte The byte to be transmitted to the slave.

Return: None.

6.2.4 I2CMasterReceiveByte

Receive one byte from a slave.

byte I2CMasterReceiveByte(void);

Parameters: None.

Return: The byte read from the slave.

Page 39 of 126

6 I2C Functions

6.2.5 I2CMasterBeginWrite

Begin a write sequence. This will send the target slave address together with R/W-bit set to
write.

void I2CMasterBeginWrite(int Address);

Parameters:

int Address The target slave address, a value from 0 to 127.

Return: None.

6.2.6 I2CMasterBeginRead

Begin a read sequence. This will send the target slave address together with R/W-bit set to
read.

void I2CMasterBeginRead(int Address);

Parameters:

int Address The target slave address, a value from 0 to 127.

Return: None.

6.2.7 I2CMasterSetAck

Set ACK state of the master. This ACK will be sent after receiption of one byte from the
slave.

void I2CMasterSetAck(bool SetOn);

Parameters:

bool SetOn Set this value to true to turn acknowledge on or false to turn
acknowledge off. Definitions ON or OFF may be used for better
readability.

Return: None.

6.2.8 Examples

// This sample demonstrates transmission and receiption of data
// to/from a I2C-slave

// This is the address of the slave

Page 40 of 126

6 I2C Functions

const int I2CAddress = 0x30;
// Init the I2C port
I2CInit(I2CMODE_MASTER);

// Send two bytes to the slave
I2CMasterStart();
I2CMasterBeginWrite(I2CAddress);
I2CMasterTransmitByte(0x12);
I2CMasterTransmitByte(0x34);
I2CMasterStop();

// Receive three bytes from the slave
byte Bytes[3];
I2CMasterStart();
I2CMasterBeginRead(I2CAddress);
// All bytes except last byte require an ACK to be sent
I2CMasterSetAck(ON);
Byte[0] = I2CMasterReceiveByte();
Byte[1] = I2CMasterReceiveByte();
// Turn off ACK before reading last byte
I2CMasterSetAck(OFF);
Byte[2] = I2CMasterReceiveByte();
I2CMasterStop();

6.3 Communication (Slave)

Communication as a I2C slaves works with well-defined I2C packets, which must be sent
between master and slave (TWN4).

The communication is performed via normal communication channels. Therefore, for trans-
mitting and receiving data, the normal IO-functions must be used. These are WriteByte,
ReadByte and so on. In case of communication via I2C, the channel 4 must be used. There
is a definition for this channel, which is CHANNEL_I2C.

As a conclusion, TWN4 offers a easy method of changing communication from USB or
RS232 to I2C just by changing the communication channel. Only care must be taken to
avoid buffer overflow. This can be achieved by calling appropriate IO-functions TestEmpty
and TestFull. On the other hand many communication protocols avoid a buffer overflow
by their inherent flow of communication (e.g. command/response protocol).

The specification for the format of the packets sent/reveived on the I2C bus is as fol-
lows:

Page 41 of 126

6 I2C Functions

6.3.1 Slave to Master

1 Byte Address/Read

1 Byte Buffer status: Bits 7..4 hold the number of bytes, which are
available to be read from the slave. Bits 3..0 hold the maxi-
mum number of bytes, which may be sent to slave.

n Bytes Payload, where n is 0..15. Note: Due to the fact, that ACK
must be turned off one byte before the master receives last
byte, it is useful to check buffer status and receive bytes in
separate read operations.

6.3.2 Master to Slave

1 Byte Address/Write

n Bytes Payload, where n is 1..15

6.3.3 Examples

This is a implementation of a I2C master communication, which routes USB- or RS232-
interface to the I2C-interface of a TWN4 Core Module. In order to test this example, two
TWN4 Core Modules are required:

• 1 TWN4 Core Module, which is running as I2C slave

• 1 TWN4 Core Module, which is running as I2C master.

//
// TWN4 App: I2C master, which routes USB or RS232-traffic to I2C
//
#include "twn4.sys.h"
#include "apptools.h"

int main(void)
{

const int I2CAddress = 0x30;
// USB or RS232 depends on which cable is connected
int HostChannel = GetHostChannel();

I2CInit(I2CMODE_MASTER);
while (true)
{

int I2CRXTXCount;
int TransferCount;

I2CMasterStart();

Page 42 of 126

6 I2C Functions

I2CMasterBeginRead(I2CAddress);
I2CMasterSetAck(OFF);
I2CRXTXCount = I2CMasterReceiveByte();
I2CMasterStop();

// **
// ****** Direction Host -> I2C *****************************
// **
TransferCount = MIN(GetByteCount(HostChannel,DIR_IN),

I2CRXTXCount & 0x0F);
if (TransferCount > 0)
{

I2CMasterStart();
I2CMasterBeginWrite(I2CAddress);
while (TransferCount-- > 0)

I2CMasterTransmitByte(ReadByte(HostChannel));
I2CMasterStop();

}

// **
// ****** Direction I2C -> Host *****************************
// **
TransferCount = MIN(GetBufferSize(HostChannel,DIR_OUT)-

GetByteCount(HostChannel,DIR_OUT),
I2CRXTXCount >> 4);

if (TransferCount > 0)
{

I2CMasterStart();
I2CMasterBeginRead(I2CAddress);
I2CMasterSetAck(ON);
// Flush RX/TX byte count
I2CMasterReceiveByte();
// Read data except last byte
while (TransferCount-- > 1)

WriteByte(HostChannel,I2CMasterReceiveByte());
// Turn off ACK before reading last byte
I2CMasterSetAck(OFF);
WriteByte(HostChannel,I2CMasterReceiveByte());
I2CMasterStop();

}
}

}

Page 43 of 126

7 RF Functions

7 RF Functions

7.1 SearchTag

Use this function to search a transponder in the reading range of TWN4. TWN4 is searching
for all types of transponders, which have been specified via function SetTagTypes. If a
transponder has been found, tag type, length of ID and ID data itself are returned.

bool SearchTag(int *TagType,int *IDBitCount,byte *ID,int MaxIDBytes);

Parameters: None.

int *TagType Pointer to an integer, which receives the type of tag, which
has been found.

int *IDBitCount Pointer to an integer, which receives the number of bits(!), the
ID consists of.

byte *ID Pointer to an array of bytes, which contain ID data, if a
transponder has been found.

int MaxIDBytes A value, which specifies the buffer size of ID. No more than
this specified number of bytes will be copied to the location
specified by ID.

Return: If a transponder has been found, the function returns true,
otherwise it returns false.

7.2 SetRFOff

Turn off RF field. If no further operations are required on a transponder found via function
SearchTag you may use this command to minimize power consumption of TWN4.

void SetRFOff(void);

Parameters: None.

Return: None.

Page 44 of 126

7 RF Functions

7.3 SetTagTypes

Use this function to configure the transponders, which are searched by function SearchTag.

void SetTagTypes(unsigned int LFTagTypes,unsigned int HFTagTypes);

Parameters:

unsigned int LFTagTypes Specifies transponder types at the frequency 125.0 kHz /
134.2 kHz.

unsigned int HFTagTypes Specifies transponder types at the frequency 13.56 MHz.

Return: None.

Page 45 of 126

7 RF Functions

Following transponder types are defined. The table is based on firmware version 1.23.

Definition Frequency Name Supported

LFTAG_EM4102 LF EM4102 Yes

LFTAG_HITAG1S LF Hitag 1 /
Hitag S

Yes

LFTAG_HITAG2 LF Hitag 2 Yes

LFTAG_EM4150 LF EM4150 On roadmap

LFTAG_AT5555 LF AT5555 /
AT5557 /

AT5577 / Q5

Yes

LFTAG_ISOFDX LF FDX /
EM4105

Yes

LFTAG_EM4026 LF EM4026 On request

LFTAG_HITAGU LF Hitag µ On request

LFTAG_EM4305 LF EM4305 Roadmap

LFTAG_HIDPROX LF HID Prox P option only

LFTAG_TIRIS LF Tiris / TILF Yes

LFTAG_COTAG LF Cotag P option only / Hash value

LFTAG_IOPROX LF IOProx P option only

LFTAG_INDITAG LF Indala P option only

LFTAG_HONEYTAG LF Honeywell P option only / Hash value

HFTAG_MIFARE HF ID14443A /
Mifare

Yes

HFTAG_ISO14443B HF ISO14443B Yes

HFTAG_ISO15693 HF ISO15693 /
Tag-it

Yes

HFTAG_LEGIC HF Legic TWN4 Legic NFC only

HFTAG_HIDICLASS HF HID
ICLASS

UID only / Full support on
roadmap

HFTAG_FELICA HF Felica UID only

HFTAG_SRX HF SRC Yes

HFTAG_NFCP2P HF NFC On roadmap

Page 46 of 126

7 RF Functions

In order to search for more than one type of transponder, several types can be combined.

Note:

The use of the predefined macro TAGMASK is mandatory, even if only one type of tag is
specified. Here is an example which is searching for EM4102 and Hitag 1 at LF and for
Mifare at HF:

Example:

SetTagTypes(TAGMASK(LFTAG_EM4102) |
TAGMASK(LFTAG_HITAG1S),
TAGMASK(HFTAG_MIFARE));

7.4 GetTagTypes

This function returns the transponder types currently being searched for by function SearchTag
separated by frequency (LF and HF).

void GetTagTypes(unsigned int *LFTagTypes,unsigned int *HFTagTypes);

Parameters:

unsigned int *LFTagTypesPointer to a value, which receives the LF tag types.

unsigned int *HFTagTypesPointer to a value, which receives the HF tag types.

Return: None.

7.5 GetSupportedTagTypes

This function returns the transponder types, which are actually supported by the individual
TWN4 separated by frequency (LF and HF). Also the P-option is taken into account. This
means, if the specific TWN4 has no option P, the appropriate transponders are not returned
as supported type of transponder.

void GetSupportedTagTypes(unsigned int *LFTagTypes,
unsigned int *HFTagTypes);

Parameters:

unsigned int *LFTagTypesPointer to a value, which receives the LF tag types.

unsigned int *HFTagTypesPointer to a value, which receives the HF tag types.

Return: None.

Page 47 of 126

8 Hitag 1- and Hitag S-Specific Transponder Operations

8 Hitag 1- and Hitag S-Specific Transponder
Operations

This chapter describes functions for accessing Hitag 1 and Hitag S transponders. Hitag
1 and Hitag S are very similar. Therefore, same set of functions can be used for both
types.

Hitag 1 and Hitag S transponder are available with different memory sizes. Due to this, the
maximum address, which can be specified depends also on the specific type of transpon-
der:

Type Memory
Size (Bits)

Memory
Size (Bytes)

Valid Address
Range

Hitag 1 2048 256 0-255

Hitag S
2048

2048 256 0-255

Hitag S 256 256 32 0-31

8.1 Read/Write Data

8.1.1 Hitag1S_ReadPage

Read one page (4 bytes) from the transponder.

bool Hitag1S_ReadPage(int PageAddress,byte *Page);

Parameters:

int PageAddress Specifies the address of the page to be read.

byte *Page Pointer to an array of 4 bytes where page data is stored after
a successful operation.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 48 of 126

8 Hitag 1- and Hitag S-Specific Transponder Operations

8.1.2 Hitag1S_WritePage

Write one page (4 bytes) to the transponder.

bool Hitag1S_WritePage(int PageAddress,const byte *Page);

Parameters:

int PageAddress Specifies the address of the page to be written.

byte *Page Pointer to an array of 4 bytes which are written to the transpon-
der.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

8.1.3 Hitag1S_ReadBlock

Read 1 to 4 consecutive pages (4 to 16 bytes) from the transponder. The number of pages
depends on the specified address: The read process is stopped as soon as the read address
reaches a block boundary, which is a multiple of 4. If BlockAddress already specifies a
block boundary, the maximum of 4 pages will be read.

bool Hitag1S_ReadBlock(int BlockAddress,
byte *Block,int *BytesRead);

Parameters:

int BlockAddress Specifies the first page address of the block to be read.

byte *Page Pointer to an array of 4 to 16 bytes which are read from the
transponder.

int *BytesRead Pointer to an integer, which receives the number of actually
read bytes.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

8.1.4 Hitag1S_WriteBlock

Write 1 to 4 consecutive pages (4 to 16 bytes) to the transponder. The number of pages
depends on the specified address: The write process is stopped as soon as the write ad-
dress reaches a block boundary, which is a multiple of 4. If BlockAddress already specifies
a block boundary, the maximum of 4 pages will be written.

bool Hitag1S_WriteBlock(int BlockAddress,const byte *Block,
int *BytesWritten);

Page 49 of 126

8 Hitag 1- and Hitag S-Specific Transponder Operations

Parameters:

int BlockAddress Specifies the first page address of the block to be written.

byte *Page Pointer to an array of 4 to 16 bytes which are written to the
transponder.

int *BytesWritten Pointer to an integer, which receives the number of actually
written bytes.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

8.2 Hitag1S_Halt

This functions will halt a currently selected transponder. The transponder will not participate
in any further transponder communication till the RF field is turned off and on again.

bool Hitag1S_Halt(void);

Parameters: None.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 50 of 126

9 Hitag 2-Specific Transponder Operations

9 Hitag 2-Specific Transponder Operations

This chapter describes functions for accessing Hitag 2 transponders.

Hitag 2 is a transponder with a memory size of 256 bits, thus 32 bytes. It stores data
organized in pages, where one page is 4 bytes. There are 8 pages, which can be accessed
with addresses in the range from 0 to 7.

Hitag 2 can be operated in two modes: Password mode and crypto mode.

Note:

TWN4 supports password mode of Hitag 2 only.

9.1 Read/Write Data

9.1.1 Hitag2_ReadPage

Read one page (4 bytes) from the transponder.

bool Hitag2_ReadPage(int PageAddress,byte *Page);

Parameters:

byte PageAddress Specifies the address of the page to be read.

byte *Page Pointer to an array of 4 bytes where page data is stored after
a successful operation.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

9.1.2 Hitag2_WritePage

Write one page (4 bytes) to the transponder.

bool Hitag2_WritePage(byte PageAddress,const byte *Page);

Page 51 of 126

9 Hitag 2-Specific Transponder Operations

Parameters:

byte PageAddress Specifies the address of the page to be written.

byte *Page Pointer to an array of 4 bytes which are written to the transpon-
der.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

9.1.3 Hitag2_SetPassword

During search for Hitag 2, TWN4 is using a password for doing a login to the transponder.
The default password after a reset is 0x4D,0x49,0x4B,0x52. This is the well-known default
password for Hitag 2.

void Hitag2_SetPassword(const byte *Password);

Parameters:

const byte *Password Pointer to an array of 4 bytes, which contains the new pass-
word.

Return: None.

9.2 Hitag2_Halt

This functions will halt a currently selected transponder. The transponder will not participate
in any further transponder communication till the RF field is turned off and on again.

bool Hitag2_Halt(void);

Parameters: None.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 52 of 126

10 TILF (TIRIS) Functions

10 TILF (TIRIS) Functions

This chapter describes functions for accessing Texas Instruments Low Frequency transpon-
ders (TILF). This type of transponder was formerly also known as TIRIS.

Note:

It is highly recommended to also study datasheets of according transponders. Datasheets
are available from Texas Instruments.

10.1 Search Function

10.1.1 TILF_SearchTag

Search for a TILF tag. This function can be used directly instead of the general search
function SearchTag. The function doing a search for a TILF tag in two different ways: First,
a tag is search via a call of function TILF_ChargeOnlyRead. Second, a tag is searched via
function TILF_MUGeneralReadPage, address 3.

bool TILF_SearchTag(int *IDBitCount,byte *ID,int MaxIDBytes);

Parameters:

int *IDBitCount A pointer to an integer, which receives the number of ac-
tually read bits(!). Due to the nature of the functions
TILF_ChargeOnlyRead and TILF_MUGeneralReadPage, the
number of received bits is either 32 or 64.

byte *ID A pointer to an array of bytes, which receives the read ID.
Due to the nature of the functions TILF_ChargeOnlyRead and
TILF_MUGeneralReadPage, the number of received bytes is
either 4 or 8.

int MaxIDBytes The maximum number of bytes, which will be copied to ID

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 53 of 126

10 TILF (TIRIS) Functions

10.2 Single-Page Read/Write Function

10.2.1 TILF_ChargeOnlyRead

Search for a single page transponder. This might be a read-only or a read/write transpon-
der. Only transponders are detected, where ID is stored under use of a CCITT CRC. If
a transponder is programmed in a different way, consider using TILF_ChargeOnlyReadLo,
which allows to read entire content of transponder W/O CRC check.

bool TILF_ChargeOnlyRead(byte *ReadData);

Parameters:

byte *ReadData A pointer to an array of 8 bytes, which receives checked ID
data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

10.2.2 TILF_ChargeOnlyReadLo

Search for a single page transponder. This might be a read-only or a read/write transponder.
No CRC check is performed, thus allowing to read also custom programmed tags. The
interpretation of data should be known by the solution builder.

bool TILF_ChargeOnlyReadLo(byte *ReadData);

Parameters:

byte *ReadData A pointer to an array of 16 bytes, which receives unchecked
ID data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

10.2.3 TILF_SPProgramPage

Write data to a single-page read/write transponder by using CCITT CRC.

bool TILF_SPProgramPage(const byte *WriteData,byte *ReadData);

Page 54 of 126

10 TILF (TIRIS) Functions

Parameters:

const byte
*WriteData

A pointer to an array of 8 bytes, which will be written to the
transponder.

byte *ReadData A pointer to an array of 8 bytes, which receives checked re-
sponse from the transponder.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

10.2.4 TILF_SPProgramPageLo

Write data to a single-page read/write transponder.

bool TILF_SPProgramPageLo(const byte *WriteData,byte *ReadData);

Parameters:

const byte
*WriteData

A pointer to an array of 10 bytes, which will be written to the
transponder.

byte *ReadData A pointer to an array of 16 bytes, which receives unchecked
response from the transponder.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

10.3 Multi-Page Read/Write Function

10.3.1 TILF_MPGeneralReadPage

General read of data from a multi-page transponder (MPT).

bool TILF_MPGeneralReadPage(int Address,byte *ReadData);

Parameters:

int Address The page address, where data will be read from.

byte *ReadData A pointer to an array of 8 bytes, which receives data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

10.3.2 TILF_MPSelectiveReadPage

Selective read of data from a multi-page transponder (SAMPT or SAMPTS).

Page 55 of 126

10 TILF (TIRIS) Functions

bool TILF_MPSelectiveReadPage(
int Address,const byte *SelectiveAddress,byte *ReadData);

Parameters:

int Address The page address, where data will be read from.

const byte
*SelectiveAddress

Pointer to an array of 3 bytes (24 bits) which provides the
selective address.

byte *ReadData A pointer to an array of 8 bytes, which receives data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

10.3.3 TILF_MPProgramPage

Program one page to a multi-page transponder (MPT).

bool TILF_MPProgramPage(
int Address,const byte *WriteData,byte *ReadData);

Parameters:

int Address The page address, where data will be programmed to.

const byte
*WriteData

A pointer to an array of 8 bytes, which will be programmed.

byte *ReadData A pointer to an array of 8 bytes, which receives data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

10.3.4 TILF_MPSelectiveProgramPage

Selective program of one page to a multi-page transponder (SAMPT or SAMPTS).

bool TILF_MPSelectiveProgramPage(
int Address,const byte *SelectiveAddress,
const byte *WriteData,byte *ReadData);

Page 56 of 126

10 TILF (TIRIS) Functions

Parameters:

int Address The page address, where data will be programmed to.

const byte
*SelectiveAddress

Pointer to an array of 3 bytes (24 bits) which provides the
selective address.

const byte
*WriteData

A pointer to an array of 8 bytes, which will be programmed.

byte *ReadData A pointer to an array of 8 bytes, which receives data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

10.3.5 TILF_MPLockPage

Lock one page on a multi-page transponder (MPT).

bool TILF_MPLockPage(int Address,byte *ReadData);

Parameters:

int Address The page address, which will be locked.

byte *ReadData A pointer to an array of 8 bytes, which receives data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

10.3.6 TILF_MPSelectiveLockPage

Selective lock one page on a multi-page transponder (SAMPT or SAMPTS).

bool TILF_MPSelectiveLockPage(
int Address,const byte *SelectiveAddress,byte *ReadData);

Parameters:

int Address The page address, which will be locked.

const byte
*SelectiveAddress

Pointer to an array of 3 bytes (24 bits) which provides the
selective address.

byte *ReadData A pointer to an array of 8 bytes, which receives data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 57 of 126

10 TILF (TIRIS) Functions

10.3.7 TILF_MPGeneralReadPageLo

General read of data from a multi-page transponder (MPT) W/O CRC-check.

bool TILF_MPGeneralReadPageLo(int Address,byte *ReadData);

Parameters:

int Address The page address, where data will be read from.

byte *ReadData A pointer to an array of 16 bytes, which receives data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

10.3.8 TILF_MPSelectiveReadPageLo

Selective read of data from a multi-page transponder (SAMPT or SAMPTS) W/O CRC-
check.

bool TILF_MPSelectiveReadPageLo(
int Address,const byte *SelectiveAddress,byte *ReadData);

Parameters:

int Address The page address, where data will be read from.

const byte
*SelectiveAddress

Pointer to an array of 3 bytes (24 bits) which provides the
selective address.

byte *ReadData A pointer to an array of 16 bytes, which receives data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

10.3.9 TILF_MPProgramPageLo

Program one page to a multi-page transponder (MPT) W/O CRC-check.

bool TILF_MPProgramPageLo(
int Address,const byte *WriteData,byte *ReadData);

Page 58 of 126

10 TILF (TIRIS) Functions

Parameters:

int Address The page address, where data will be programmed to.

const byte
*WriteData

A pointer to an array of 10 bytes, which will be programmed.

byte *ReadData A pointer to an array of 16 bytes, which receives data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

10.3.10 TILF_MPSelectiveProgramPageLo

Selective program of one page to a multi-page transponder (SAMPT or SAMPTS) W/O
CRC-check.

bool TILF_MPSelectiveProgramPageLo(
int Address,const byte *SelectiveAddress,
const byte *WriteData,byte *ReadData);

Parameters:

int Address The page address, where data will be programmed to.

const byte
*SelectiveAddress

Pointer to an array of 3 bytes (24 bits) which provides the
selective address.

const byte
*WriteData

A pointer to an array of 10 bytes, which will be programmed.

byte *ReadData A pointer to an array of 16 bytes, which receives data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

10.3.11 TILF_MPLockPageLo

Lock one page on a multi-page transponder (MPT) W/O CRC-check.

bool TILF_MPLockPageLo(int Address,byte *ReadData);

Parameters:

int Address The page address, which will be locked.

byte *ReadData A pointer to an array of 16 bytes, which receives data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 59 of 126

10 TILF (TIRIS) Functions

10.3.12 TILF_MPSelectiveLockPageLo

Selective lock one page on a multi-page transponder (SAMPT or SAMPTS) W/O CRC-
check.

bool TILF_MPSelectiveLockPageLo(
int Address,const byte *SelectiveAddress,byte *ReadData);

Parameters:

int Address The page address, which will be locked.

const byte
*SelectiveAddress

Pointer to an array of 3 bytes (24 bits) which provides the
selective address.

byte *ReadData A pointer to an array of 16 bytes, which receives data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

10.4 Multi-Usage Read/Write Function

10.4.1 TILF_MUGeneralReadPage

General read of one page from a multi-usage transponder (MUSA).

bool TILF_MUGeneralReadPage(int Address,byte *ReadData);

Parameters:

int Address The page address, where data will be read from.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

10.4.2 TILF_MUSelectiveReadPage

Selective read of one page from a multi-usage transponder (MUSA).

bool TILF_MUSelectiveReadPage(
int Address,int SelectiveAddress,byte *ReadData);

Page 60 of 126

10 TILF (TIRIS) Functions

Parameters:

int Address The page address, where data will be read from.

int SelectiveAddress A value which specifies the 8-bit selective address.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

10.4.3 TILF_MUSpecialReadPage

Special read of one page from a multi-usage transponder (MUSA).

bool TILF_MUSpecialReadPage(
int Address,const byte *SpecialAddress1,
const byte *SpecialAddress2,byte *ReadData);

Parameters:

int Address The page address, where data will be read from.

const byte
*SpecialAddress1

Pointer to an array of 5 bytes (40 bits) which provides the
special address 1.

const byte
*SpecialAddress2

Pointer to an array of 3 bytes (24 bits) which provides the
special address 2.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

10.4.4 TILF_MUProgramPage

Program one page to a multi-usage transponder (MUSA).

bool TILF_MUProgramPage(int Address,const byte *WriteData,byte *ReadData);

Parameters:

int Address The page address, where data will be programmed to.

const byte
*WriteData

A pointer to an array of 5 bytes, which will be programmed.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 61 of 126

10 TILF (TIRIS) Functions

10.4.5 TILF_MUSelectiveProgramPage

Selective program of one page to a multi-usage transponder (MUSA).

bool TILF_MUSelectiveProgramPage(
int Address,int SelectiveAddress,
const byte *WriteData,byte *ReadData);

Parameters:

int Address The page address, where data will be programmed to.

int SelectiveAddress A value which specifies the 8-bit selective address.

const byte
*WriteData

A pointer to an array of 5 bytes, which will be programmed.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

10.4.6 TILF_MUSpecialProgramPage

Special program of one page to a multi-usage transponder (MUSA).

bool TILF_MUSpecialProgramPage(
int Address,const byte *SpecialAddress1,
const byte *SpecialAddress2,const byte *WriteData,
byte *ReadData);

Parameters:

int Address The page address, where data will be programmed to.

const byte
*SpecialAddress1

Pointer to an array of 5 bytes (40 bits) which provides the
special address 1.

const byte
*SpecialAddress2

Pointer to an array of 3 bytes (24 bits) which provides the
special address 2.

const byte
*WriteData

A pointer to an array of 5 bytes, which will be programmed.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

10.4.7 TILF_MULockPage

Lock one page of a multi-usage transponder (MUSA).

Page 62 of 126

10 TILF (TIRIS) Functions

bool TILF_MULockPage(int Address,byte *ReadData);

Parameters:

int Address The page address, which will be locked.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

10.4.8 TILF_MUSelectiveLockPage

Selective lock of one page of a multi-usage transponder (MUSA).

bool TILF_MUSelectiveLockPage(
int Address,int SelectiveAddress,byte *ReadData);

Parameters:

int Address The page address, which will be locked.

int SelectiveAddress A value which specifies the 8-bit selective address.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

10.4.9 TILF_MUSpecialLockPage

Special lock of one page of a multi-usage transponder (MUSA).

bool TILF_MUSpecialLockPage(
int Address,const byte *SpecialAddress1,
const byte *SpecialAddress2,byte *ReadData);

Parameters:

int Address The page address, which will be locked.

const byte
*SpecialAddress1

Pointer to an array of 5 bytes (40 bits) which provides the
special address 1.

const byte
*SpecialAddress2

Pointer to an array of 3 bytes (24 bits) which provides the
special address 2.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 63 of 126

11 Legic-Specific Functions

11 Legic-Specific Functions

This chapter describes functions for accessing Legic functionality.

Note:

These functions are available at TWN4 Legic NFC only.

11.1 Direct Access of Legic Chip

TWN4 Legic NFC has a built-in Legic chip type SM4200. There are two functions available
to directly communicate with this chipset.

Note:

Due to license restrictions, this documentation only mentions the functions itself. In order
to use full functionality of the Legic chip, appropriate documentation is required, which is
available under NDA (none-disclosure agreement) only.

11.1.1 SM4200_GenericRaw

Send a command and receive the response from SM4200. Command and response are
expected to include CRC. This function is intended to be used for end-to-end communication
between SM4200 and a host.

bool SM4200_GenericRaw(const byte *TXData,int TXDataLength,
int MaxRXDataLength,int Timeout);

Page 64 of 126

11 Legic-Specific Functions

Parameters:

const byte *TXData Pointer to an array of bytes, which contains the command to
be sent to SM4200.

int TXDataLength Number of bytes to be sent to SM4200.

byte *RXData Pointer to an array of bytes, which receives response from
SM4200

int *RXDataLength Pointer to an integer, which receives the actually read number
of bytes.

int MaxRXDataLength A value, which specifies the maximum number of bytes, which
can be received byte RXData, thus the buffer size.

int Timeout Maximum time, the function should wait for a response from
SM4200. This value is specified in milliseconds.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

11.1.2 SM4200_Generic

Send a command and receive the response from SM4200. This function is intended to be
used by standand-along applications.

bool SM4200_Generic(const byte *TXData,int TXDataLength,
byte *RXData,int *RXDataLength,
int MaxRXDataLength,int Timeout);

Page 65 of 126

11 Legic-Specific Functions

Parameters:

const byte *TXData Pointer to an array of bytes, which contains the command to
be sent to SM4200. The command has to be specified W/O
leading length byte and W/O closing CRC value.

int TXDataLength Number of bytes contained in TXData.

byte *RXData Pointer to an array of bytes, which receives response from
SM4200. Received data is W/O length byte and W/O CRC
value.

int *RXDataLength Pointer to an integer, which receives length of the actually re-
ceived payload.

int MaxRXDataLength A value, which specifies the maximum number of bytes, which
can be received byte RXData, thus the buffer size.

int Timeout Maximum time, the function should wait for a response from
SM4200. This value is specified in milliseconds.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 66 of 126

12 Mifare Classic Specific Transponder Operations

12 Mifare Classic Specific Transponder
Operations

The memory of Mifare Classic transponders is organized in sectors and blocks. In case of
Mifare Classic 1K, the memory is divided into 16 sectors, each sector holds 4 blocks. Each
block holds 16 bytes of data. Each sector is secured by two keys, Key A and Key B which
are always located in the last block of a sector (sector trailer). In order to access the respec-
tive sector, a login using one of the two keys has to be performed. Once logged in, the data
blocks are accessible for read-, write- or value-operations. Each key may be equipped with
certain access rights, the access rights are coded in byte 6, 7 and 8 of the sector trailer.
Byte 9 is available for data storage.
In case of Mifare Classic 4K, the memory layout of sector addresses 0 to 31 is compatible
to the 1K version, from sector 32 to 39, each sector holds 16 data blocks.
In any case, block 0 of sector 0 is called manufacturer block, and cannot be overwritten.
Within this block, the UID is stored and some manufacturer specific data.

12.1 Login

In order to do any operation on a sector of a Mifare Classic transponder, a login to the
respective sector has to be performed. Each sector holds two keys, Key A and Key B. De-
pending on the access conditions of the sector, the appropriate key shall be used for the
desired operation. Both the keys and the access conditions are stored in the sector trailer.

bool MifareClassic_Login
(
const byte* Key,
byte KeyType,
int Sector
);

Page 67 of 126

12 Mifare Classic Specific Transponder Operations

Parameters:

const byte* Key Pointer to an array of bytes, which has to contain six bytes.
These bytes represent the key for the login process.

byte KeyType Specifies, with which key the operation has to be performed.
This is one of the defined constants KEYA or KEYB.

int Sector Specifies the sector for the login.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Key (hex) Description

FF FF FF FF FF FF Default Transport Key A/B (NXP)

A0 A1 A2 A3 A4 A5 Default Transport Key A (Infineon)

B0 B1 B2 B3 B4 B5 Default Transport Key B (Infineon)

D3 F7 D3 F7 D3 F7 Default key for NDEF-formatted tags

Table 12.1: Well-known keys for Mifare Classic transponders

12.2 Read/Write Data

12.2.1 Read Data Block

Read 16 bytes of data from a data-block of the transponder. Please note: If a sector trailer
is read, the respective key which was used for login is represented by zeros.

bool MifareClassic_ReadBlock
(
int Block,
byte* Data
);

Page 68 of 126

12 Mifare Classic Specific Transponder Operations

Parameters:

int Block Specify the address of the block to be read. The valid range
of this parameter is between 0 and 255.

byte* Data This parameter holds the data which was read from the tag if
the operation was successful. Note that this function always
reads 16 bytes of data, so the minimum array size of Data
must be at least 16 bytes.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

12.2.2 Write Data Block

Write 16 bytes of data to a data-block of the transponder. Special care must be taken when
writing to a sector trailer as a faulty setting of the access conditions can make the sector
unaccessible.

bool MifareClassic_WriteBlock
(
int Block,
const byte* Data
);

Parameters:

int Block Specify the address of the block to be written. The valid range
of this parameter is between 0 and 255.

const byte* Data This parameter holds the data which shall be written to the
tag. Note that this function always writes 16 bytes of data, so
the minimum array size of Data shall be at least 16 bytes.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

12.3 Handling of Value Blocks

12.3.1 Read Value Block

Read the value stored in a Mifare Classic compliant value block.

bool MifareClassic_ReadValueBlock
(

Page 69 of 126

12 Mifare Classic Specific Transponder Operations

int Block,
int* Value
);

Parameters:

int Block Specify the address of the block to be read. The valid range of
this parameter is between 0 and 255. Note that this function
does not work with sector trailers.

int* Value This parameter holds the value which was read from the tag if
the operation was successful.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Remark: This function checks if the block has a valid value block format. If this is not
the case, the function returns false.

12.3.2 Write Value Block

Format a data block to a Mifare Classic compliant value block and assign an initial value.

bool MifareClassic_WriteValueBlock
(
int Block,
int Value
);

Parameters:

int Block Specify the address of the block to be formatted. The valid
range of this parameter is between 0 and 255. Note that this
function does not work with sector trailers.

int Value This parameter holds the initial value of the value block.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

12.3.3 Increment Value Block

Credit a value block with a given increment value.

bool MifareClassic_IncrementValueBlock
(
int Block,

Page 70 of 126

12 Mifare Classic Specific Transponder Operations

int Value
);

Parameters:

int Block Specify the address of the block to be incremented. The valid
range of this parameter is between 0 and 255. Note that this
function does not work with sector trailers.

int Value This parameter holds the increment value.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

12.3.4 Decrement Value Block

Debit a value block with a given decrement value.

bool MifareClassic_DecrementValueBlock
(
int Block,
int Value
);

Parameters:

int Block Specify the address of the block to be decremented. The valid
range of this parameter is between 0 and 255. Note that this
function does not work with sector trailers.

int Value This parameter holds the decrement value.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 71 of 126

12 Mifare Classic Specific Transponder Operations

Sector 0

Sector 1

Sector 2

Sector 3

Sector 4

Sector 5

Sector 6

Sector 7

Sector 8

Sector 9

Sector 10

Sector 11

Sector 12

Sector 13

Sector 14

Sector 15

Key A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Key B

Block 0

Block 1

Block 2

Block 3 Access Rights

Figure 12.1: Memory layout of a Mifare Classic 1K transponder

Page 72 of 126

13 Mifare Ultralight/Ultralight C Specific Transponder Operations

13 Mifare Ultralight/Ultralight C Specific
Transponder Operations

13.1 Login (Ultralight C only)

Depending on the security settings of the transponder, a login with the valid transponder key
might be necessary prior performing any further operation.

bool MifareUltralightC_Authenticate
(
const byte* Key
);

Parameters:

const byte* Key Pointer to an array of bytes, which has to contain 16 bytes.
These bytes represent the key for the authentication process.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Key (hex) Description

49 45 4D 4B 41 45 52 42
21 4E 41 43 55 4F 59 46

Default Transport Key

Table 13.1: Well-known key for Mifare Ultralight C transponders

Page 73 of 126

13 Mifare Ultralight/Ultralight C Specific Transponder Operations

13.2 Read/Write Data

13.2.1 Read Page

Though the page size of this transponder family is 4 bytes, the transponder always returns
16 bytes of data. This is achieved by reading four consecutive data pages, e.g. if page 4
is to be read, the transponder also returns the content of page 5, 6 and 7. The transponder
incorporates an integrated roll-back mechanism if reading is done beyond the last physical
available page address. E.g., in case of reading page 14 of Mifare Ultralight this would result
in reading page 14, 15, 0, 1.

bool MifareUltralight_ReadPage
(
int Page,
byte* Data
);

Parameters:

int Page Specify the address of the page to be read. The valid range
of this parameter is between 0 and 15 (Ultralight) or 0 and 43
(Ultralight C).

byte* Data This parameter holds the data which was read from the tag if
the operation was successful. Note that this function always
reads 16 bytes of data, so the minimum array size of Data
must be at least 16 bytes.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

13.2.2 Write Page

Write 4 bytes of data to a data-page of the transponder. Compared to the read-function, this
function processes only one page at once.

bool MifareUltralight_WritePage
(
int Page,
const byte* Data
);

Page 74 of 126

13 Mifare Ultralight/Ultralight C Specific Transponder Operations

Parameters:

int Page Specify the address of the page to be written. The valid range
of this parameter is between 2 and 15 (Ultralight) or 2 and 47
(Ultralight C).

const byte* Data This parameter holds the data which shall be written to the
tag. Note that this function always writes 4 bytes of data, so
the minimum array size of Data must be at least 4 bytes.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 75 of 126

14 ISO15693 Specific Transponder Operations

14 ISO15693 Specific Transponder
Operations

14.1 Generic ISO15693 Command

This function can be used for ISO15693 specific transponder operations which are not cov-
ered by high-level system functions.

bool ISO15693_GenericCommand
(
byte Flags,
byte Command,
byte* Data,
int* Length,
int BufferSize
);

Parameters:

byte Flags Specify the ISO15693 flags. Note: The flags regarding RF-
communication are set automatically, so by default one may
assign 0x00 to this parameter.

byte Command Command code.

byte* Data This parameter works as Input/Output-buffer. All additional
parameters which are sent to the transponder are passed
within this buffer. This buffer is also used for data returned
from the transponder.

int* Length This parameter works as Input/Output-variable. It holds the
payload-length of Data in the directions Reader→Tag and
Tag→Reader.

int BufferSize This parameter holds the array-size of Data in bytes.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 76 of 126

14 ISO15693 Specific Transponder Operations

14.2 Gather Tag Specific Information

14.2.1 Get System Information

This function returns more in-depth information of the tag. The function is available in two
versions (Protocol Extension flag set or reset), as some tag types like ST 24LR16/64 require
the Protocol Extension flag to be set for proper operation.

bool ISO15693_GetSystemInformation
(
TISO15693_SystemInfo* SystemInfo
);

bool ISO15693_GetSystemInformationExt
(
TISO15693_SystemInfo* SystemInfo
);

Parameters:

TISO15693_SystemInfo*
SystemInfo

Pointer to the structure which receives the System Informa-
tion.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Remark: As the GetSystemInformation command is no mandatory ISO15693 com-
mand, it is not implemented in all tag types available on the market.

14.2.2 Get Tag Type

The ISO15693 API incorporates two methods to determine the tag type, either by analysing
the UID or the System Information structure.

14.2.2.1 Get Tag Type From UID

This function can be used to determine the tag type of ISO15693 compliant transponders if
only the UID is available.

int ISO15693_GetTagTypeFromUID
(
byte* UID
);

Page 77 of 126

14 ISO15693 Specific Transponder Operations

Members Length
(Bits)

Description

byte DSFID_Present 1 Set to 1 if DSFID is present

byte AFI_Present 1 Set to 1 if AFI is present

byte
VICC_Memory_Size_Present

1 Set to 1 if BlockSize and Number_of_Blocks
are present

byte IC_Reference_Present 1 Set to 1 if IC_Reference is present

byte Res1 4 Reserved for future use

byte UID[8] 64 Unique Identifier

byte DSFID 8 Data Storage Format Identifier

byte AFI 8 Application Family Identifier

byte BlockSize 8 Size of one data block in bytes

uint16_t Number_of_Blocks 16 Number of available blocks

byte IC_Reference 8 Meaning defined by the IC manufacturer

Table 14.1: Definition of TISO15693_SystemInfo

Parameters:

byte* UID This parameter holds the UID. Watch for the correct byte or-
der; UID[0] shall have the value 0xE0

Return: The return-value is the determined tag-type which is repre-
sented by one of the constants in the table below.

Page 78 of 126

14 ISO15693 Specific Transponder Operations

Value Manufacturer Tag Type

0x00 NXP ICode SL2

0x01 ICode SL2S

0x0F Unknown

0x10 TI Tag-It HFI Plus Inlay

0x11 Tag-It HFI Plus Chip

0x12 Tag-It HFI Standard

0x13 Tag-It HFI Pro

0x1F Unknown

0x4F ST Unknown

0x50 Infineon SRF55V02P

0x51 SRF55V10P

0x52 SRF55V02S

0x53 SRF55V10S

0x5F Unknown

0xFF Unknown Unknown ISO15693

Table 14.2: Retrievable tag types from UID

14.2.2.2 Get Tag Type From System Information

This function can be used to determine the tag type of ISO15693 compliant transponders if
the System Information is available.

int ISO15693_GetTagTypeFromSystemInfo
(
TISO15693_SystemInfo* SystemInfo
);

Parameters:

TISO15693_SystemInfo*
SystemInfo

Pointer to the structure which holds the System Information.

Return: The return-value is the determined tag-type which is repre-
sented by one of the constants in the table below.

Page 79 of 126

14 ISO15693 Specific Transponder Operations

14.3 Read/Write Data

14.3.1 Read Single Block

Read a single data block from the transponder. The function is available in two versions
(Protocol Extension flag set or reset), as some tag types like ST 24LR16/64 require the Pro-
tocol Extension flag to be set for proper operation.

bool ISO15693_ReadSingleBlock
(
int BlockNumber,
byte* BlockData,
int* Length,
int BufferSize
);

bool ISO15693_ReadSingleBlockExt
(
int BlockNumber,
byte* BlockData,
int* Length,
int BufferSize
);

Parameters:

int BlockNumber This parameter holds the number of the block to be read.

byte* BlockData This parameter holds the data which was read from the tag if
the operation was successful. Note that the block size varies
between different tag types, so the array size of BlockData
should be set to a reasonable value.

int* Length This parameter holds the length of data which was read from
the tag in bytes.

int BufferSize This parameter holds the array-size of BlockData in bytes.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

14.3.2 Write Single Block

Write to a single data block of the transponder. The function is available in two versions
(Protocol Extension flag set or reset), as some tag types like ST 24LR16/64 require the Pro-
tocol Extension flag to be set for proper operation.

Page 80 of 126

14 ISO15693 Specific Transponder Operations

bool ISO15693_WriteSingleBlock
(
int BlockNumber,
const byte* BlockData,
int Length
);

bool ISO15693_WriteSingleBlockExt
(
int BlockNumber,
const byte* BlockData,
int Length
);

Parameters:

int BlockNumber This parameter holds the number of the block to be written.

const byte* BlockData This parameter holds the data which shall be written to the
tag.

int Length This parameter holds the length of data which shall be written
to the tag in bytes.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 81 of 126

14 ISO15693 Specific Transponder Operations

Value Manufacturer Tag Type

0x00 NXP ICode SL2

0x01 ICode SL2S

0x0F Unknown

0x10 TI Tag-It HFI Plus Inlay

0x11 Tag-It HFI Plus Chip

0x12 Tag-It HFI Standard

0x13 Tag-It HFI Pro

0x1F Unknown

0x20 Fuji MB89R118

0x21 MB89R119

0x2F Unknown

0x30 ST 24LR16

0x31 24LR64

0x40 LRI1K

0x41 LRI2K

0x42 LRIS2K

0x43 LRIS64K

0x4F Unknown

0x50 Infineon SRF55V02P

0x51 SRF55V10P

0x52 SRF55V02S

0x53 SRF55V10S

0x5F Unknown

0xFF Unknown Unknown ISO15693

Table 14.3: Retrievable tag types from System Information

Page 82 of 126

15 Cryptographic Operations

15 Cryptographic Operations

There are two main cryptographic methods available, these are Triple-DES (Data Encryp-
tion Standard) and AES (Advanced Encryption Standard). TDES is available in two versions
that support different key-lengths: 128 bit (TDES2K) and 192 bit (TDES3K). AES is always
based on 128 bit keys.
Each cryptographic method has to be initialized before it can be used. During initialization
the key is passed to the cryptographic method and assigned to a cryptographic environment.
After initialization each method provides functions for encryption and decryption.

15.1 Triple-DES

DES Encrypt

K1
Plain Block

DES Decrypt

K2

DES Encrypt

K1
Ciphered Block

DES Decrypt

K1

DES Encrypt

K2

DES Decrypt

K1
Plain BlockCiphered Block

Figure 15.1: TDES2K Operation

The implementation of TDES is based on FIPS PUB 46-3. The method always operates
on entire data blocks of 8 bytes. The DES algorithm is passed three times for one TDES
operation. In case of TDES2K, the 128 bit key is hereby split into two parts: K1 and K2. In
case of TDES3K, the 192 bit key is split into three parts: K1, K2 and K3.

15.1.1 Initialization

Use these functions to initialize the TDES2K/3K cryptographic method. During initialization,
the 128/192 bit key is passed to the specified cryptographic environment.

Page 83 of 126

15 Cryptographic Operations

DES Encrypt

K1
Plain Block

DES Decrypt

K2

DES Encrypt

K3
Ciphered Block

DES Decrypt

K3

DES Encrypt

K2

DES Decrypt

K1
Plain BlockCiphered Block

Figure 15.2: TDES3K Operation

void TDEA_Init
(
int CryptoEnv,
const byte* Key
);

void TDES3K_Init
(
int CryptoEnv,
const byte* Key
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants.

const byte* Key The key is passed by this parameter. Depending on the init-
function, the key-length is either 16 or 24 bytes.

Return: This function has no return value.

15.1.2 Encrypt

Use these functions to encrypt 8 bytes of plain data.

void TDEA_Encrypt
(
int CryptoEnv,
const byte* Plain,
byte* Cipher
);

Page 84 of 126

15 Cryptographic Operations

void TDES3K_Encrypt
(
int CryptoEnv,
const byte* Plain,
byte* Cipher
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. The environment must have been ini-
tialized before it can be used.

const byte* Plain Pointer to the array, that contains the plain data block to be
encrypted.

byte* Cipher Pointer to the array, that receives the encrypted data block.
TDES always operates on 8 byte blocks, so take care for
proper dimensioning of the array.

Return: This function has no return value.

15.1.3 Decrypt

Use these functions to decrypt a 8 bytes data block.

void TDEA_Decrypt
(
int CryptoEnv,
const byte* Cipher,
byte* Plain
);

void TDES3K_Decrypt
(
int CryptoEnv,
const byte* Cipher,
byte* Plain
);

Page 85 of 126

15 Cryptographic Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. The environment must have been ini-
tialized before it can be used.

const byte* Cipher Pointer to the array, that contains the ciphered data block to
be decrypted.

byte* Plain Pointer to the array, that receives the decrypted data block.
TDES always operates on 8 byte blocks, so take care for
proper dimensioning of the array.

Return: This function has no return value.

15.2 AES

The implementation of AES is based on FIPS PUB 197. The method always operates on
entire data blocks of 16 bytes, the key-length is 128 bit.

15.2.1 Initialization

Use this function to initialize the AES cryptographic method. During initialization, the 128 bit
key is passed to the specified cryptographic environment.

void AES128_Init
(
int CryptoEnv,
const byte* Key
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants.

const byte* Key The key is passed by this parameter. The key-length is 16
bytes.

Return: This function has no return value.

Page 86 of 126

15 Cryptographic Operations

15.2.2 Encrypt

Use this function to encrypt 16 bytes of plain data.

void AES128_Enc
(
int CryptoEnv,
const byte* Plain,
byte* Cipher
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. The environment must have been ini-
tialized before it can be used.

const byte* Plain Pointer to the array, that contains the plain data block to be
encrypted.

byte* Cipher Pointer to the array, that receives the encrypted data block.
AES always operates on 16 byte blocks, so take care for
proper dimensioning of the array.

Return: This function has no return value.

15.2.3 Decrypt

Use this function to decrypt a 16 bytes data block.

void AES128_Dec
(
int CryptoEnv,
const byte* Cipher,
byte* Plain
);

Page 87 of 126

15 Cryptographic Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. The environment must have been ini-
tialized before it can be used.

const byte* Cipher Pointer to the array, that contains the ciphered data block to
be decrypted.

byte* Plain Pointer to the array, that receives the decrypted data block.
AES always operates on 16 byte blocks, so take care for
proper dimensioning of the array.

Return: This function has no return value.

Page 88 of 126

16 DESFire Specific Transponder Operations

16 DESFire Specific Transponder
Operations

The memory of a DESFire transponder is organized as a flexible file system. The transpon-
der can hold up to 28 applications and each application may contain up to 32 files of different
type and size. Each application can be secured by up to 14 cryptographic keys which are
stored in the applications’s internal key file. Applications are identified by a number, which
must be unambiguous on the transponder. The same rule applies to files within applications,
these are identified by numbers which must be unambiguous within the application.
By default, there exists a root-application with the identifier 0x000000 which defines the so-
called transponder level. This application cannot hold any files, it is intended to be used for
basic administration of the transponder. A simple use-case could be: Search for a transpon-

Card

Application 1

Application 2

Application 3

Key File

Data File 1

Data File 2

Data File 3

Figure 16.1: DESFire memory layout

der, select the desired application, perform an authentication with the respective key (if
required), access data file for read or write operation.

Page 89 of 126

16 DESFire Specific Transponder Operations

Search

Transponder

Select Application

Authentication

necessary ?

Authenticate

Yes

Read/Write Data

No

Figure 16.2: Simple way to gain access to the file system

16.1 Security Related Operations

16.1.1 Authenticate

This function shall be used to perform a mutual three pass authentication between reader
and transponder. The function supports both 3DES, 3K3DES and AES cryptography. In or-
der to support both the DESFire EV1 transponder family and the older DESFire MF3ICD40,
the function incorporates a so-called Compatible Mode.
After successful authentication, a session-key is generated which is used for all further cryp-

Page 90 of 126

16 DESFire Specific Transponder Operations

tographic operations. The authenticated state is invalidated in case of selecting an applica-
tion, changing the key which was used for the current authentication or a failed authentica-
tion.

On transponder level, depending on the security configuration, an authentication with the
transponder master key may be required to perform specific operations:

• Gather information on the transponder

• Change the transponder master key

• Change the transponder master key settings

• Create/delete applications

On application level, depending on the configuration, an authentication may be required to
perform specific operations:

• Gather information about the application

• Change the keys of the application

• Create/delete files within the application

• Change access rights

• Access data files

bool DESFire_Authenticate
(
int CryptoEnv,
int KeyNoTag,
const byte* Key,
int KeyByteCount,
int KeyType,
int Mode
);

Page 91 of 126

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. All consecutive operations with the
transponder shall be done using the specified environment.

int KeyNoTag Specify the key number that shall be used for authentication.
On transponder level, only key 0 is valid for authentication. On
application level, one can specify up to 14 keys which can be
used for authentication. Both on transponder and application
level, key 0 identifies the respective master key.

const byte* Key Specify the key that shall be used for authentication. For
3DES/AES, the key must have a key length of 16 bytes, for
3K3DES the key must have a key length of 24 bytes.

int KeyByteCount Specify the key length of the key. Use one of the prede-
fined constants DESF_KEYLEN_3DES, DESF_KEYLEN_3K3DES or
DESF_KEYLEN_AES.

int KeyType Specify the type of the specified key. Use one of the prede-
fined constants DESF_KEYTYPE_3DES, DESF_KEYTYPE_3K3DES or
DESF_KEYTYPE_AES. The authentication will be performed ac-
cording to the specified key type.

int Mode Select either DESFire EV1 ISO-mode authentication or the
compatible native DESFire authentication scheme. Use one
of the predefined constants DESF_AUTHMODE_COMPATIBLE or
DESF_AUTHMODE_EV1. Note that 3K3DES or AES cryptography
cannot be used in compatible mode.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Remark: By default, the initial value of any key is all zeros. E.g. after creation of an
application, all keys have this initial value.

Example:

// Perform AES-authentication using key 0

const byte Key[16] =
{

0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF

};

if (DESFire_Authenticate(
CRYPTO_ENV0,
0,

Page 92 of 126

16 DESFire Specific Transponder Operations

Key,
DESF_KEYLEN_AES,
DESF_KEYTYPE_AES,
DESF_AUTHMODE_EV1))

{
DoSomething();

}

16.1.2 Get Key Version

This function can be used to read the current key version of any key that is stored on the
transponder. If the selected application is 0x000000, the command applies to the transpon-
der master key and therefore only key number 0 is valid for querying the key version.

bool DESFire_GetKeyVersion
(
int CryptoEnv,
int KeyNo,
byte* KeyVer
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int KeyNoTag Specify the key number that shall be queried.

byte* KeyVer The key version information is returned as one byte by this
parameter.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Example:

// Query key version of key 0
byte KeyVer;

if (DESFire_GetKeyVersion(CRYPTO_ENV0,0,&KeyVer))
{

DoSomething();
}

Page 93 of 126

16 DESFire Specific Transponder Operations

16.1.3 Get Key Settings

This function allows to get information on the transponder- or application key settings. De-
pending on the key settings, a preceding authentication with the respective master key may
be required.

bool DESFire_GetKeySettings
(
int CryptoEnv,
TDESFireMasterKeySettings* MasterKeySettings
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

TDESFireMasterKey
Settings*
MasterKeySettings

This structure receives the queried master key settings.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Example:

Members Length
(Bits)

Description

TDESFireKeySettings
KeySettings

8 This member holds the settings of the master
key.

int NumberOfKeys 32 This member holds the number of available
keys. The valid range is 0 to 14.

int KeyType 32 This member holds the type of keys. Possi-
ble value is one of the predefined constants
DESF_KEYTYPE_3DES, DESF_KEYTYPE_3K3DES or
DESF_KEYTYPE_AES.

Table 16.1: Definition of TDESFireMasterKeySettings

// Query key settings of application 0x123456

TDESFireMasterKeySettings MasterKeySettings;

Page 94 of 126

16 DESFire Specific Transponder Operations

Members Length
(Bits)

Description

byte AllowChangeMasterKey 1 If set to 1 the master key is changeable, oth-
erwise it cannot be changed any more.

byte FreeDirectoryList 1 If set to 1 no preceding authentication with the
master key is required to perform the opera-
tions GetFileIDs, GetFileSettings, GetKeySet-
tings (application level) or GetApplicationIDs,
GetKeySettings (transponder level). If set to
0, an authentication with the master key is re-
quired.

byte FreeCreateDelete 1 If set to 1 no preceding authentication with
the master key is required to perform the
operations CreateFile/DeleteFile (application
level) or CreateApplication/DeleteApplication
(transponder level). If set to 0, an authenti-
cation with the master key is required.

byte ConfigurationChangeable 1 If set to 1 the configuration is changeable if au-
thenticated with the master key. If set to 0, the
configuration cannot be changed any more.

byte ChangeKeyAccessRights 4 This member holds the access rights for
changing keys. On transponder level this
member is set to 0.

0x0: Authentication with the master key is nec-
essary to change any key.

0x1...0xD: Authentication with the specified
key is necessary to change any key. The
specified key and the master key can only be
changed after authentication with the master
key.

0xE: Authentication with the key to be
changed is necessary to change the key.

0xF: All keys except the master key are frozen.

Table 16.2: Definition of TDESFireKeySettings

if (DESFire_SelectApplication(0x123456))
{

if (DESFire_GetKeySettings(CRYPTO_ENV0,&MasterKeySettings))
{

Page 95 of 126

16 DESFire Specific Transponder Operations

DoSomething(MasterKeySettings);
}

}

16.1.4 Change Key Settings

This function allows to change the transponder- or application master key settings. The re-
spective master key settings can only be changed, if the bit ConfigurationChangeable of the
current key settings was not cleared before. In order to change the key settings, a preceding
authentication with the respective master key is required in general.

bool DESFire_ChangeKeySettings
(
int CryptoEnv,
const TDESFireMasterKeySettings* MasterKeySettings
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

const TDESFireMasterKey
Settings*
MasterKeySettings

This structure holds the new master key settings. See chapter
Get Key Settings for details.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

16.1.5 Change Key

This function allows to change a key. The respective key settings define (see chapter Get
Key Settings) whether changing of a key is permitted or not and which key must be used for
authentication before calling this function.

bool DESFire_ChangeKey
(
int CryptoEnv,
int KeyNo,
const byte* OldKey,
int OldKeyByteCount,
const byte* NewKey,

Page 96 of 126

16 DESFire Specific Transponder Operations

int NewKeyByteCount,
byte KeyVersion,
const TDESFireMasterKeySettings* MasterKeySettings
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int KeyNoTag Specify the key number that shall be changed.

const byte* OldKey Specify the old key.

int OldKeyByteCount Specify the length of the old key in bytes.

const byte* NewKey Specify the new key.

int NewKeyByteCount Specify the length of the new key in bytes.

byte KeyVersion Specify the key version of the new key.

const TDESFireMasterKey
Settings*
MasterKeySettings

This structure holds the current master key settings. See
chapter Get Key Settings for details.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Example:

// Change key 1 of application 0x123456

const byte oldKey[16] =
{

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

};
const byte newKey[16] =
{

0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF

};
TDESFireMasterKeySettings MasterKeySettings;

if (!DESFire_SelectApplication(0x123456))
{

return; // Error selecting application
}
if (!DESFire_GetKeySettings(CRYPTO_ENV0, &MasterKeySettings))
{

Page 97 of 126

16 DESFire Specific Transponder Operations

return; // Error gathering key settings
}
if (MasterKeySettings.KeySettings.ChangeKeyAccessRights == 0)
{

// Authenticate with master key
if (!DESFire_Authenticate(

CRYPTO_ENV0,
0,
oldKey,
DESF_KEYLEN_AES,
DESF_AUTHMODE_EV1))

{
return; // Authentication error

}
if (!DESFire_ChangeKey(

CRYPTO_ENV0,
1,
oldKey,
newKey,
DESF_KEYLEN_AES,
0x20,
&MasterKeySettings))

{
return; // Error changing key 1

}
}

16.2 Transponder Related Operations

16.2.1 Create Application

This function allows to create a new application on the transponder. Depending on the se-
curity settings of the transponder, a preceding authentication with the transponder master
key may be required, see chapter Get Key Settings for details.

bool DESFire_CreateApplication
(
int CryptoEnv,
int AID,
const TDESFireMasterKeySettings* MasterKeySettings
);

Page 98 of 126

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int AID Specify the Application ID of the new application to be cre-
ated. The AID consists of 24 bit, its value must be unique on
the transponder. The value 0x000000 is reserved for the root
application.

const TDESFireMasterKey
Settings*
MasterKeySettings

This structure holds the master key settings of the new appli-
cation. See chapter Get Key Settings for details.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Example:

// Create application 0x123456

TDESFireMasterKeySettings MasterKeySettings;

MasterKeySettings.KeySettings.AllowChangeMasterKey = true;
MasterKeySettings.KeySettings.FreeDirectoryList = true;
MasterKeySettings.KeySettings.FreeCreateDelete = true;
MasterKeySettings.KeySettings.ConfigurationChangeable = true;
MasterKeySettings.KeySettings.ChangeKeyAccessRights = 0x0;
MasterKeySettings.NumberOfKeys = 2;
MasterKeySettings.KeyType = DESF_KEYTYPE_AES;

if (DESFire_CreateApplication(
CRYPTO_ENV0,
0x123456,
&MasterKeySettings))

{
DoSomething();

}

16.2.2 Delete Application

This function allows to delete an existing application on the transponder. Depending on the
security settings of the transponder, a preceding authentication with the transponder master
key may be required, see chapter Get Key Settings for details.

bool DESFire_DeleteApplication

Page 99 of 126

16 DESFire Specific Transponder Operations

(
int CryptoEnv,
int AID
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int AID Specify the Application ID of the application that shall be
deleted. The AID consists of 24 bit. The value 0x000000
is reserved for the root application hence this AID cannot be
deleted.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

16.2.3 Get Application IDs

This function allows to list all application IDs that exist on the transponder. Depending on the
security settings of the transponder, a preceding authentication with the transponder master
key may be required, see chapter Get Key Settings for details.

bool DESFire_GetApplicationIDs
(
int CryptoEnv,
int* AIDs,
int* NumberOfAIDs,
int MaxAIDCnt
);

Page 100 of 126

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int* AIDs After successful completion of this function, this parameter
holds a list of the retrieved application IDs.

int* NumberOfAIDs This parameter holds the number of retrieved application IDs.

int MaxAIDCnt Specify the maximum number of application IDs, that can be
stored in the array AIDs. Note: Up to 28 applications can
be stored on a DESFire transponder, so take care for proper
dimensioning of the array AIDs.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Example:

// List applications stored on the transponder

int AIDList[28];
int NumberOfAIDs;

if (DESFire_GetApplicationIDs(
CRYPTO_ENV0,
AIDList,
&NumberOfAIDs,
sizeof(AIDList)/sizeof(int)))

{
DoSomething(AIDList,NumberOfAIDs);

}

16.2.4 Select Application

This function is used to select an application in order to perform further operations such as
reading or writing. Depending on the security settings of the selected application, an au-
thentication with one of the application’s keys may be required after selection.

bool DESFire_SelectApplication
(
int CryptoEnv,
int AID
);

Page 101 of 126

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int AID This parameter holds the application ID of the application to
be selected.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

16.2.5 Format Transponder

Calling this function results in formatting the transponder. This means, all applications in-
cluding their files and keys are destroyed and the occupied memory space is released for
future use. For proper usage, a preceding authentication with the transponder master key is
required.

bool DESFire_FormatTag
(
int CryptoEnv
);

16.2.6 Get Transponder Information

This function can be used to gather detailed information about the DESFire transponder re-
garding hardware and software version.

bool DESFire_GetVersion
(
int CryptoEnv,
TDESFireVersion* Version
);

Page 102 of 126

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

TDESFireVersion*
Version

This structure receives the queried manufacturing related in-
formation.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Members Length
(Bits)

Description

TDESFireTagInfo HWInfo 80 This member holds the hardware related ver-
sion information.

TDESFireTagInfo SWInfo 80 This member holds the software related ver-
sion information.

TDESFireProdInfo ProdInfo 32 This member holds manufacturing specific in-
formation.

Table 16.3: Definition of TDESFireVersion

Members Length
(Bits)

Description

byte VendorID 8 Codes the vendor ID (0x04 stands for NXP).

byte Type 8 Codes the type (here 0x01).

byte SubType 8 Codes the subtype(here 0x01).

byte VersionMajor 8 Codes the major version number.

byte VersionMinor 8 Codes the minor version number.

uint32_t StorageSize 32 Size of EEPROM in bytes.

byte CommunicationProtocol 8 Codes the communication protocol type (here
0x05 means ISO14443-3 and -4).

Table 16.4: Definition of TDESFireTagInfo

Page 103 of 126

16 DESFire Specific Transponder Operations

Members Length
(Bits)

Description

byte UID[7] 56 This member holds the unique serial number.
If the transponder is configured to Random ID,
the UID is set to 0x00.

byte ProdBatchNumber[5] 40 Codes the production batch number.

byte
CalendarWeekOfProduction

8 Codes the calendar week of production.

byte YearOfProduction 8 Codes the year of production.

Table 16.5: Definition of TDESFireProdInfo

16.2.7 Get Available Memory Space

This function allows to gather the available memory space of the transponder. A preceding
authentication is not required.

bool DESFire_FreeMem
(
int CryptoEnv,
int* FreeMemory
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int* FreeMemory After successful completion of this function, the available
memory size in bytes is returned by this parameter.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

16.2.8 Get Card UID

This function allows to retrieve the card UID in case of random ID. A preceding authentica-
tion with any key is required prior calling this function.

bool DESFire_GetUID
(

Page 104 of 126

16 DESFire Specific Transponder Operations

int CryptoEnv,
byte* UID,
int* Length,
int BufferSize
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

byte* UID After successful completion of this function, the real card UID
is returned by this parameter. Note: The UID usually occupies
7 bytes, so take care for proper dimensioning of the array UID.

int* Length The length in bytes of the UID is returned by this parameter.

int BufferSize This parameter specifies the size of the array UID in bytes.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

16.2.9 Set Transponder Configuration

16.2.9.1 Disable Format Tag

When this function is called, formatting the transponder is not possible any more (see chap-
ter Format Transponder). A preceding authentication with the transponder master key is
required prior calling this function. Note: Disabling tag formatting cannot be reset any more.

bool DESFire_DisableFormatTag
(
int CryptoEnv
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 105 of 126

16 DESFire Specific Transponder Operations

16.2.9.2 Enable Random ID

When this function is called, the transponder is turned into Random ID mode, this means the
real UID can only be retrieved by authenticating to the transponder and calling the function
Get Card UID. A preceding authentication with the transponder master key is required prior
calling this function. Note: Setting the transponder to Random ID mode cannot be reset any
more.

bool DESFire_EnableRandomID
(
int CryptoEnv
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

16.2.9.3 Set Default Key

This function can be used to specify the default key, which is applied when e.g. a new ap-
plication is created on the transponder. By default, keys are initialized to 0x00. A preceding
authentication with the transponder master key is required prior calling this function.

bool DESFire_SetDefaultKey
(
int CryptoEnv,
const byte* Key,
int KeyByteCount,
byte KeyVersion
);

Page 106 of 126

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

const byte* Key This parameter specifies the new default key.

int KeyByteCount This parameter specifies the length of the new default
key in bytes. Use one of the predefined constants
DESF_KEYLEN_3DES, DESF_KEYLEN_3K3DES or DESF_KEYLEN_AES.

byte KeyVersion This parameter specifies the default key version.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

16.2.9.4 Set User-defined Answer To Select (ATS)

This function can be used to specify a user-defined Answer To Select (ATS) which is re-
turned by the transponder after RATS. Changing the ATS to a non-default value shall only
be carried out by experts as a ATS longer than 16 bytes could cause problems with readers
that support only frame sizes of max. 16 bytes. The ATS must be formatted as follows: TL
T0 TA TB TC + Historical bytes. The default ATS of DESFire EV1 is TL=0x06, T0=0x75,
TA=0x77, TB=0x81, TC=0x02, Historical Bytes=0x80.

bool DESFire_SetDefaultKey
(
int CryptoEnv,
const byte* ATS,
int Length
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

const byte* ATS This parameter specifies the new ATS.

int Length This parameter specifies the length of the new ATS in bytes.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 107 of 126

16 DESFire Specific Transponder Operations

16.3 Application Related Operations

This section deals with file handling within an application of a DESFire transponder. An
application can hold three different basic file types: Data files, Value files and Record Files.
Data files are available either with or without integrated backup-mechanism, Value files and
Record files always incorporate integrated backup. There exist two types of record files:
Linear record files and Cyclic Record Files.
Some functions for file handling are using the data structure TDESFireFileSettings which
defines all relevant file settings. See the following tables for reference:

Members Length
(Bits)

Description

byte FileType 8 This member defines the file type. Possible
values are: DESF_FILETYPE_STDDATAFILE,
DESF_FILETYPE_BACKUPDATAFILE,
DESF_FILETYPE_VALUEFILE,
DESF_FILETYPE_LINEARRECORDFILE,
DESF_FILETYPE_CYCLICRECORDFILE.

byte CommSet 8 This member defines the communication
settings between reader and transpon-
der when the file is accessed. Pos-
sible values are: DESF_COMMSET_PLAIN,
DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC

uint16_t AccessRights 16 This member holds the access rights.

union
TDESFireSpecificFileInfo
SpecificFileInfo

32 to
128

This member holds file type specific informa-
tion.

Table 16.6: Definition of TDESFireFileSettings

Coding of access rights:
Every file holds four different access rights, each access right is coded in one nibble. These
four nibbles are concatenated and form the 16 bit variable AccessRights.

15...12 11...8 7...4 3...0

Read Access Write Access Read/Write Access Change Access
Rights

Table 16.7: Coding of AccessRights

Page 108 of 126

16 DESFire Specific Transponder Operations

One nibble codes 16 possible values. If it codes a number between 0 and 13, this references
a certain key number within the application.
If the number is 14, this means "free" access so there is no authentication necessary to
perform the respective operation on the file. In case of coding the number 15, this means
"deny" access.

Members Length
(Bits)

Description

struct
TDESFireDataFileSettings
DataFileSettings

32 Definition of data file settings.

struct
TDESFireValueFileSettings
ValueFileSettings

128 Definition of value file settings.

struct
TDESFireRecordFileSettings
RecordFileSettings

96 Definition of record file settings.

Table 16.8: Definition of union TDESFireSpecificFileInfo

Members Length
(Bits)

Description

uint32_t FileSize 32 Definition of the data file size.

Table 16.9: Definition of struct TDESFireDataFileSettings

Members Length
(Bits)

Description

uint32_t LowerLimit 32 Definition of the lower limit which must not be
passed by a debit operation.

uint32_t UpperLimit 32 Definition of the upper limit which must not be
passed by a credit operation.

uint32_t LimitedCreditValue 32 Definition of the initial value of the file at file
creation.

bool LimitedCreditEnabled 32 LimitedCredit feature enabled or disabled.

Table 16.10: Definition of struct TDESFireValueFileSettings

Page 109 of 126

16 DESFire Specific Transponder Operations

Members Length
(Bits)

Description

uint32_t RecordSize 32 Definition of the size of one single record in
bytes.

uint32_t MaxNumberOfRecords 32 Definition of the maximum number of records.

uint32_t
CurrentNumberOfRecords

32 Definition of the current number of records.
This member is ignored at file creation.

Table 16.11: Definition of struct TDESFireRecordFileSettings

16.3.1 Create File

This section deals with the creation of new files within applications. Depending on the spec-
ified file type, the file is either created with or without integrated backup-mechanism. Each
file requires an unambiguous identifier which is coded in one byte in the range from 0x00
to 0x1F. During creation of the file, the level of security is defined in the communication
settings. Communication can be either plain, secured by MAC or fully enciphered. Further-
more, the access rights are assigned to certain keys held by the application.
Depending on the security settings of the application, a preceding authentication with the
application master key may be required, see chapter Get Key Settings for details.

bool DESFire_CreateDataFile
(
int CryptoEnv,
int FileNo,
const TDESFireFileSettings* FileSettings
);

bool DESFire_CreateValueFile
(
int CryptoEnv,
int FileNo,
const TDESFireFileSettings* FileSettings
);

Page 110 of 126

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int FileNo Specify the file ID. If the ID already exists within the applica-
tion, this results in an error.

const
TDESFireFileSettings*
FileSettings

This member holds the file settings. See description of
TDESFireFileSettings for details.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Example:

// Create new standard data file (without backup)
// in application 0x123456

TDESFireFileSettings FileSettings;
int FileID;

if (DESFire_SelectApplication(0x123456))
{

// We create a standard data file
FileSettings.FileType = DESF_FILETYPE_STDDATAFILE;
// Communication between reader and tag is fully enciphered
FileSettings.CommSet = DESF_COMMSET_FULLY_ENC;
// Read Access : Key 1
// Write Access : Key 2
// Read/Write : Key 3
// Change Settings : Key 4
FileSettings.AccessRights = 0x1234;
// File size shall be 512 bytes
FileSettings.SpecificFileInfo.DataFileSettings.FileSize = 512;
// Assign an identifier to the file
FileID = 0x12;
if (DESFire_CreateDataFile(CRYPTO_ENV0, FileID, &FileSettings))
{

DoSomething();
}

}

Page 111 of 126

16 DESFire Specific Transponder Operations

16.3.2 Delete File

This function allows to permanently deactivate a file within an application. This means, the
allocated memory is not released for further usage, only the file number can be re-used for
creating a new file. In order to re-use the memory of deleted files, this requires formatting
the transponder but this leads to permanent loss of any application data. Depending on the
security settings of the application, a preceding authentication with the application master
key may be required, see chapter Get Key Settings for details.

bool DESFire_DeleteFile
(
int CryptoEnv,
int FileNo
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int FileNo Specify the ID of the file which shall be deleted. If the ID
doesn’t exist within the application, this results in an error.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

16.3.3 Get File IDs

This function allows to list all file IDs that exist within the currently selected application. Each
file ID is coded in one byte in the range from 0x00 to 0x1F. Duplicate values are not possible
as each file must have an unambiguous identifier. Depending on the security settings of the
application, a preceding authentication with the application master key may be required, see
chapter Get Key Settings for details.

bool DESFire_GetFileIDs
(
int CryptoEnv,
byte* FileIDList,
int* FileIDCount,
int MaxFileIDCount
);

Page 112 of 126

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

byte* FileIDList After successful completion of this function, this parameter
holds a list of the retrieved file IDs.

int* FileIDCount This parameter holds the number of retrieved file IDs.

int MaxFileIDCount Specify the maximum number of file IDs, that can be stored
in the array FileIDList. Note: Up to 32 files can be stored
within an application, so take care for proper dimensioning of
the array FileIDList.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Example:
See chapter Get File Settings for a comprehensive example.

16.3.4 Get File Settings

This function allows to query the file settings of an existing file within an application. The
returned information depends on the type of the file. Depending on the security settings of
the application, a preceding authentication with the application master key may be required,
see chapter Get Key Settings for details.

bool DESFire_GetFileSettings
(
int CryptoEnv,
int FileNo,
TDESFireFileSettings* FileSettings
);

Page 113 of 126

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int FileNo Specify the file ID which shall be queried.

TDESFireFileSettings*
FileSettings

This member holds the returned file settings. See description
of TDESFireFileSettings for details.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Example:

// Query file settings of all files in application 0x123456

TDESFireFileSettings FileSettings;

// An application can hold up to 32 files
byte FileIDList[32];
int FileIDCount;

int i;

if (DESFire_SelectApplication(0x123456))
{

// Gather a list of present file IDs
if (DESFire_GetFileIDs(

CRYPTO_ENV0,
FileIDList,
&FileIDCount,
sizeof(FileIDList)))

{
for (i=0; i<FileIDCount; i++)
{

// Query the settings of each file
if (DESFire_GetFileSettings(

CRYPTO_ENV0,
FileIDList[i],
&FileSettings))

{
switch(FileSettings.FileType)
{
case DESF_FILETYPE_STDDATAFILE:

DoSomething();
break;

case DESF_FILETYPE_VALUEFILE:
DoSomethingElse();

Page 114 of 126

16 DESFire Specific Transponder Operations

break;
}

}
}

}
}

16.3.5 Change File Settings

This function allows to change the access parameters such as communication settings and
access rights of an existing file. Depending on the actual change access rights of the file,
authentication with the respective key has to be performed before calling this function. Fur-
thermore, the change access right must be different from "deny". See Coding of Access
Rights for details.

bool DESFire_ChangeFileSettings
(
int CryptoEnv,
int FileNo,
int NewCommSet,
int OldAccessRights,
int NewAccessRights
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int FileNo Specify the file ID whose settings shall be changed.

int NewCommSet Specify the new communication settings. Possible val-
ues are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

int OldAccessRights Specify the current Access Rights of the file.

int NewAccessRights Specify the new Access Rights of the file.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 115 of 126

16 DESFire Specific Transponder Operations

16.4 File Related Operations

16.4.1 Data Files

16.4.1.1 Read Data

This function shall be used to access a standard or backup data file in order to read from it.
Depending on the file’s access rights, a preceding authentication with the read or read/write
key has to be done, see Coding of Access Rights for details. The function allows segmented
access, this means the user is able to either read the entire file or only a part starting at a
user-defined offset.

bool DESFire_ReadData
(
int CryptoEnv,
int FileNo,
byte* Data,
int Offset,
int Length,
int CommSet
);

Page 116 of 126

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int FileNo Specify the ID of the file that shall be read.

byte* Data After successful completion of this function, the buffer referred
by this parameter holds the data which was read from the
transponder. Take care for adequate dimensioning.

int Offset Specify the starting address for reading. The valid range of
this parameter is 0x000000 to FileSize - 1. In case of address-
range violation, the function returns with an error.

int Length Specify the length of data that shall be read. The valid range
of this parameter is FileSize - Offset. In case of address-range
violation, the function returns with an error.

int CommSet Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possible val-
ues are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Example:

// Read data file 0x12 which is located in application 0x123456

TDESFireFileSettings FileSettings;

int ReadAccess;

// This is the buffer that receives the data to be read
byte Data[512];

// If an authentication is necessary, we assume this would be
// the key that gives read access
const byte KeyRead[16] =
{

0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF

};

if (!DESFire_SelectApplication(CRYPTO_ENV0, 0x123456))
return; // Error

Page 117 of 126

16 DESFire Specific Transponder Operations

// Gather file settings
if (!DESFire_GetFileSettings(CRYPTO_ENV0, 0x12, &FileSettings))

return; // Error

// Read access rights are located in the highest nibble of
// FileSettings.AccessRights
ReadAccess = (FileSettings.AccessRights >> 12) & 0x000F;

switch (ReadAccess)
{
case 15: // Access denied

return;
case 14: // Free access

break;
default:

// Authenticate with the "reading-key"
if (!DESFire_Authenticate(

CRYPTO_ENV0,
ReadAccess,
KeyRead,
DESF_KEYLEN_AES,
DESF_KEYTYPE_AES,
DESF_AUTHMODE_EV1))
return; // Error

}

// Check size of reading buffer
if (FileSettings.SpecificFileInfo.DataFileSettings.FileSize >

sizeof(Data))
return; // Buffer size not enough

// Read entire data file
if (DESFire_ReadData(

CRYPTO_ENV0,
0x12,
Data,
0,
FileSettings.SpecificFileInfo.DataFileSettings.FileSize,
FileSettings.CommSet))

{
DoSomething();

}

16.4.1.2 Write Data

This function shall be used to access a standard or backup data file in order to write to it.
Depending on the file’s access rights, a preceding authentication with the write or read/write

Page 118 of 126

16 DESFire Specific Transponder Operations

key has to be done, see Coding of Access Rights for details. The function allows segmented
access, this means the user is able to either rewrite the entire file or only a part starting at a
user-defined offset.

bool DESFire_WriteData
(
int CryptoEnv,
int FileNo,
const byte* Data,
int Offset,
int Length,
int CommSet
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int FileNo Specify the ID of the file that shall be written.

const byte* Data The buffer referred by this parameter holds the data which is
written to the file.

int Offset Specify the starting address for writing. The valid range of this
parameter is 0x000000 to FileSize - 1. In case of address-
range violation, the function returns with an error.

int Length Specify the length of data that shall be written. The valid range
of this parameter is FileSize - Offset. In case of address-range
violation, the function returns with an error.

int CommSet Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possible val-
ues are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Remark: If data is written to a Backup Data File, it is necessary to validate the written
data with the function Commit Transaction. Calling the function Abort Trans-
action will invalidate all changes.

Example:

// Write to data file 0x12 which is located in application 0x123456

TDESFireFileSettings FileSettings;

Page 119 of 126

16 DESFire Specific Transponder Operations

int WriteAccess;

// This is the buffer that holds the data to be written
const byte Data[] =
{

0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08
};

// If an authentication is necessary, we assume this would be
// the key that gives write access
const byte KeyWrite[16] =
{

0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF

};

if (!DESFire_SelectApplication(CRYPTO_ENV0, 0x123456))
return; // Error

// Gather file settings
if (!DESFire_GetFileSettings(CRYPTO_ENV0, 0x12, &FileSettings))

return; // Error

// Write access rights are located in bits 11...8 of
// FileSettings.AccessRights
WriteAccess = (FileSettings.AccessRights >> 8) & 0x000F;

switch (WriteAccess)
{
case 15: // Access denied

return;
case 14: // Free access

break;
default:

// Authenticate with the "writing-key"
if (!DESFire_Authenticate(

CRYPTO_ENV0,
WriteAccess,
KeyWrite,
DESF_KEYLEN_AES,
DESF_KEYTYPE_AES,
DESF_AUTHMODE_EV1))
return; // Error

}

// Check size of file
if (FileSettings.SpecificFileInfo.DataFileSettings.FileSize <

sizeof(Data))

Page 120 of 126

16 DESFire Specific Transponder Operations

return; // File size not enough

// Write to data file
if (DESFire_WriteData(

CRYPTO_ENV0,
0x12,
Data,
0,
sizeof(Data),
FileSettings.CommSet))

{
DoSomething();

}

16.4.2 Value Files

16.4.2.1 Get Value

This function allows to read the current value from a Value File. Depending on the file’s
access rights, a preceding authentication with the read, write or read/write key has to be
done, see Coding of Access Rights for details.

bool DESFire_GetValue
(
int CryptoEnv,
int FileNo,
int* Value,
int CommSet
);

Page 121 of 126

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int FileNo Specify the ID of the Value File whose value shall be queried.

int* Value After successful completion of this function, this parameter
holds the value which was read from the file.

int CommSet Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possible val-
ues are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

16.4.2.2 Debit

This function allows to decrease a value stored in a Value File. The function requires a pre-
ceding authentication with the read, write or read/write key, see Coding of Access Rights for
details. The value modifications of Credit , Debit and Limited Credit functions are cumulated
until the function Commit Transaction is called.
If the Limited Credit feature is enabled, the new limit for a subsequent Limited Credit func-
tion call is set to the sum of Debit modifications within one transaction before calling Commit
Transaction. This assures, that a Limited Credit can not re-book more values than a debiting
transaction deducted before.

bool DESFire_Debit
(
int CryptoEnv,
int FileNo,
const int Value,
int CommSet
);

Page 122 of 126

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int FileNo Specify the ID of the Value File that shall be debited.

const int Value The value stored in the value file will be decreased by this
parameter.

int CommSet Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possible val-
ues are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Remark: After modifying value files, it is necessary to validate the transaction with the
function Commit Transaction. Calling the function Abort Transaction will inval-
idate all changes.

16.4.2.3 Credit

This function allows to increase a value stored in a Value File. The function requires a pre-
ceding authentication with the read/write key, see Coding of Access Rights for details. The
value modifications of Credit , Debit and Limited Credit functions are cumulated until the
function Commit Transaction is called.
If the Limited Credit feature is enabled, this function cannot be used. Use the function Lim-
ited Credit instead.

bool DESFire_Credit
(
int CryptoEnv,
int FileNo,
const int Value,
int CommSet
);

Page 123 of 126

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int FileNo Specify the ID of the Value File that shall be credited.

const int Value The value stored in the value file will be increased by this
parameter.

int CommSet Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possible val-
ues are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Remark: After modifying value files, it is necessary to validate the transaction with the
function Commit Transaction. Calling the function Abort Transaction will inval-
idate all changes.

16.4.2.4 Limited Credit

This function allows a limited increase of a value stored in a Value File without having full
read/write permissions to the file. This feature can only be used if it has been enabled dur-
ing file creation. The function requires a preceding authentication with the write or read/write
key, see Coding of Access Rights for details. The value modifications of Credit , Debit and
Limited Credit functions are cumulated until the function Commit Transaction is called.
After calling this function, the new limit is set to 0, regardless of the amount which has been
re-booked. Hence, this function can only be used once after a Debit transaction.

bool DESFire_LimitedCredit
(
int CryptoEnv,
int FileNo,
const int Value,
int CommSet
);

Page 124 of 126

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int FileNo Specify the ID of the Value File that shall be credited.

const int Value The value stored in the value file will be increased by this
parameter. It is limited to the sum of Debit operations on this
value file within the most recent transaction containing at least
one Debit.

int CommSet Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possible val-
ues are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Remark: After modifying value files, it is necessary to validate the transaction with the
function Commit Transaction. Calling the function Abort Transaction will inval-
idate all changes.

16.4.3 Commit Transaction

This function allows to validate all previous modifications on files with integrated backup
mechanism such as Backup Data Files, Value Files and Record Files. When a transac-
tion has been finished, this is usually the last called function; if this step was omitted, any
changes would be lost if a different application is selected or the transponder is removed
from the RF-field.

bool DESFire_CommitTransaction
(
int CryptoEnv
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 125 of 126

16 DESFire Specific Transponder Operations

16.4.4 Abort Transaction

This function allows to discard all previous modifications on files with integrated backup
mechanism such as Backup Data Files, Value Files and Record Files.

bool DESFire_AbortTransaction
(
int CryptoEnv
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 126 of 126

	1 System Functions
	1.1 SysCall
	1.2 Reset
	1.3 StartBootloader
	1.4 GetSysTicks
	1.5 GetVersionString
	1.6 GetUSBType
	1.7 GetDeviceType

	2 I/O Functions
	2.1 Configuration
	2.1.1 Set COM-Port Parameters
	2.1.2 Get USB Device State
	2.1.3 Get Host Channel

	2.2 Data I/O
	2.2.1 Host Communication Channel
	2.2.1.1 Send Byte
	2.2.1.2 Test Byte
	2.2.1.3 Read Byte

	2.2.2 Any Communication Channel
	2.2.2.1 Query I/O Buffer Size
	2.2.2.2 Get I/O Buffer Byte Count
	2.2.2.3 Test Empty
	2.2.2.4 Test Full
	2.2.2.5 Send Byte
	2.2.2.6 Read Byte

	3 Memory Functions
	3.1 Byte Operations
	3.1.1 Compare Bytes
	3.1.2 Copy Bytes
	3.1.3 Fill Bytes
	3.1.4 Swap Bytes

	3.2 Bit Operations
	3.2.1 Read Bit
	3.2.2 Write Bit
	3.2.3 Copy Bit
	3.2.4 Compare Bits
	3.2.5 Copy Bits
	3.2.6 Fill Bits
	3.2.7 Swap Bits
	3.2.8 Count Bits

	4 Peripheral Functions
	4.1 General Purpose Inputs/Outputs (GPIOs)
	4.1.1 Configuration
	4.1.1.1 Outputs
	4.1.1.2 Inputs

	4.1.2 Basic Port Functions
	4.1.2.1 Set GPIOs to Logical Level
	4.1.2.2 Toggle GPIOs
	4.1.2.3 Waveform Generation
	4.1.2.4 Read GPIOs

	4.1.3 Higher Level Port Functions
	4.1.3.1 Send Data in Wiegand Format
	4.1.3.2 Send Data in Omron Format

	4.2 Beeper
	4.3 LEDs
	4.3.1 General Purpose LED Functions
	4.3.1.1 Initialization
	4.3.1.2 Set LEDs On/Off
	4.3.1.3 Toggle LEDs
	4.3.1.4 Blink LEDs
	4.3.1.5 Get LED State

	4.3.2 Diagnostic LED
	4.3.2.1 Set Diagnostic LED On/Off
	4.3.2.2 Toggle Diagnostic LED
	4.3.2.3 Get LED State

	5 Conversion Functions
	5.1 Hexadecimal ASCII to Binary
	5.1.1 Scan Hexadecimal Character
	5.1.2 Scan Hexadecimal String

	5.2 Binary to Hexadecimal ASCII

	6 I2C Functions
	6.1 Initialization/Deinitialization
	6.1.1 I2CInit
	6.1.2 I2CDeInit
	6.1.3 Examples

	6.2 Communication (Master)
	6.2.1 I2CMasterStart
	6.2.2 I2CMasterStop
	6.2.3 I2CMasterTransmitByte
	6.2.4 I2CMasterReceiveByte
	6.2.5 I2CMasterBeginWrite
	6.2.6 I2CMasterBeginRead
	6.2.7 I2CMasterSetAck
	6.2.8 Examples

	6.3 Communication (Slave)
	6.3.1 Slave to Master
	6.3.2 Master to Slave
	6.3.3 Examples

	7 RF Functions
	7.1 SearchTag
	7.2 SetRFOff
	7.3 SetTagTypes
	7.4 GetTagTypes
	7.5 GetSupportedTagTypes

	8 Hitag1- and HitagS-Specific Transponder Operations
	8.1 Read/Write Data
	8.1.1 Hitag1S_ReadPage
	8.1.2 Hitag1S_WritePage
	8.1.3 Hitag1S_ReadBlock
	8.1.4 Hitag1S_WriteBlock

	8.2 Hitag1S_Halt

	9 Hitag2-Specific Transponder Operations
	9.1 Read/Write Data
	9.1.1 Hitag2_ReadPage
	9.1.2 Hitag2_WritePage
	9.1.3 Hitag2_SetPassword

	9.2 Hitag2_Halt

	10 TILF (TIRIS) Functions
	10.1 Search Function
	10.1.1 TILF_SearchTag

	10.2 Single-Page Read/Write Function
	10.2.1 TILF_ChargeOnlyRead
	10.2.2 TILF_ChargeOnlyReadLo
	10.2.3 TILF_SPProgramPage
	10.2.4 TILF_SPProgramPageLo

	10.3 Multi-Page Read/Write Function
	10.3.1 TILF_MPGeneralReadPage
	10.3.2 TILF_MPSelectiveReadPage
	10.3.3 TILF_MPProgramPage
	10.3.4 TILF_MPSelectiveProgramPage
	10.3.5 TILF_MPLockPage
	10.3.6 TILF_MPSelectiveLockPage
	10.3.7 TILF_MPGeneralReadPageLo
	10.3.8 TILF_MPSelectiveReadPageLo
	10.3.9 TILF_MPProgramPageLo
	10.3.10 TILF_MPSelectiveProgramPageLo
	10.3.11 TILF_MPLockPageLo
	10.3.12 TILF_MPSelectiveLockPageLo

	10.4 Multi-Usage Read/Write Function
	10.4.1 TILF_MUGeneralReadPage
	10.4.2 TILF_MUSelectiveReadPage
	10.4.3 TILF_MUSpecialReadPage
	10.4.4 TILF_MUProgramPage
	10.4.5 TILF_MUSelectiveProgramPage
	10.4.6 TILF_MUSpecialProgramPage
	10.4.7 TILF_MULockPage
	10.4.8 TILF_MUSelectiveLockPage
	10.4.9 TILF_MUSpecialLockPage

	11 Legic-Specific Functions
	11.1 Direct Access of Legic Chip
	11.1.1 SM4200_GenericRaw
	11.1.2 SM4200_Generic

	12 Mifare Classic Specific Transponder Operations
	12.1 Login
	12.2 Read/Write Data
	12.2.1 Read Data Block
	12.2.2 Write Data Block

	12.3 Handling of Value Blocks
	12.3.1 Read Value Block
	12.3.2 Write Value Block
	12.3.3 Increment Value Block
	12.3.4 Decrement Value Block

	13 Mifare Ultralight/Ultralight C Specific Transponder Operations
	13.1 Login (Ultralight C only)
	13.2 Read/Write Data
	13.2.1 Read Page
	13.2.2 Write Page

	14 ISO15693 Specific Transponder Operations
	14.1 Generic ISO15693 Command
	14.2 Gather Tag Specific Information
	14.2.1 Get System Information
	14.2.2 Get Tag Type
	14.2.2.1 Get Tag Type From UID
	14.2.2.2 Get Tag Type From System Information

	14.3 Read/Write Data
	14.3.1 Read Single Block
	14.3.2 Write Single Block

	15 Cryptographic Operations
	15.1 Triple-DES
	15.1.1 Initialization
	15.1.2 Encrypt
	15.1.3 Decrypt

	15.2 AES
	15.2.1 Initialization
	15.2.2 Encrypt
	15.2.3 Decrypt

	16 DESFire Specific Transponder Operations
	16.1 Security Related Operations
	16.1.1 Authenticate
	16.1.2 Get Key Version
	16.1.3 Get Key Settings
	16.1.4 Change Key Settings
	16.1.5 Change Key

	16.2 Transponder Related Operations
	16.2.1 Create Application
	16.2.2 Delete Application
	16.2.3 Get Application IDs
	16.2.4 Select Application
	16.2.5 Format Transponder
	16.2.6 Get Transponder Information
	16.2.7 Get Available Memory Space
	16.2.8 Get Card UID
	16.2.9 Set Transponder Configuration
	16.2.9.1 Disable Format Tag
	16.2.9.2 Enable Random ID
	16.2.9.3 Set Default Key
	16.2.9.4 Set User-defined Answer To Select (ATS)

	16.3 Application Related Operations
	16.3.1 Create File
	16.3.2 Delete File
	16.3.3 Get File IDs
	16.3.4 Get File Settings
	16.3.5 Change File Settings

	16.4 File Related Operations
	16.4.1 Data Files
	16.4.1.1 Read Data
	16.4.1.2 Write Data

	16.4.2 Value Files
	16.4.2.1 Get Value
	16.4.2.2 Debit
	16.4.2.3 Credit
	16.4.2.4 Limited Credit

	16.4.3 Commit Transaction
	16.4.4 Abort Transaction

